реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы

Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. В.Н. КАРАЗИНА

КАФЕДРА ХИМИЧЕСКОЙ МЕТРОЛОГИИ












Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы













ХАРЬКОВ 2009

АННОТАЦИЯ


Курсовая работа содержит 2 раздела, 32 страницы, 4 таблицы, 2 рисунка, 21 библиографическую ссылку.

Цель работы: оценить точность визуального тест-определения нитрит-иона на основе пенополиуретана в зависимости от концентрационного шага построения цветовой шкалы сравнения, а также от условий наблюдения элементов этой шкалы.

В работе уточнены условия хемосорбционного определения нитрит-иона на основе пенополиуретана, проведена надёжная оценка предела определения нитрит-иона; оценена точность такого определения для цветовых шкал с различным шагом и её зависимость от выбора фона, на котором сравнивались элементы этих шкал.

Ключевые слова: нитрит-ион, тест-метод, пенополиуретан, хемосорбция, предел определения, цветометрия, шкала сравнения, шаг шкалы, общее цветовое различие.

СОДЕРЖАНИЕ


Введение

Литературный обзор

1.1 Обзор методов качественного и количественного определения нитрит-ионов

1.1.1 Качественное обнаружение нитрит-ионов

1.1.2 Гравиметрические методы определения нитрит-ионов

1.1.3 Титриметрические методы определения нитрит-ионов

1.1.4 Электрохимические методы определения нитрит-ионов

1.1.4.1 Вольтамперометрия

1.1.4.2 Потенциометрическое титрование

1.1.4.3 Кулонометрическое титрование

1.1.5 Спектрофотометрическое определение нитрит-ионов

1.1.5.1 Образование азокрасителей

1.1.5.2 Образование солей диазония

1.1.5.3 Образование нитрозосоединений, окрашенных и флуоресцирующих комплексных соединений

1.1.6 Кинетические методы определения нитрит-ионов

1.2 Тест-методы определения нитрит-ионов

1.2.1 Общая характеристика тест-методов химического анализа

1.2.2 Пенополиуретаны и их свойства

1.2.3 Применение пенополиуретанов как сорбентов для тест-определения нитрит-ионов

1.2.4 Метрологические характеристики тест-методов

1.2.4.1 Погрешность тест-определений

1.2.4.2 Нижняя граница диапазона определяемых содержаний (сн), или предел определения

1.2.4.3 Предел обнаружения

1.3 Применение метода цветометрии (колориметрии) в тест-определениях

1.3.1 Общая характеристика метода

1.3.2 Построение цветовых шкал

2 Экспериментальная часть

2.1 Реактивы и оборудование

2.2 Методики эксперимента

2.2.1 Методика подготовки ППУ для определения NO2

2.2.2 Методика приготовления стандартных шкал для визуального определения нитрит-иона

2.2.3 Методика определения нижней границы диапазона определяемых содержаний (сн) для тестового хемосорбционного определения NO2

2.2.4 Методика построения градуировочного графика для определения NO2- с применением метода спектроскопии диффузного отражения

2.2.5 Методика оценки точности визуального тест-определения NO2- для разных шкал

2.3 Результаты эксперимента

2.3.1 Результаты оценки предела определения для тестового хемосорбционного определения нитрит-иона

2.3.2 Результаты построения градуировочного графика для определения NO2

2.3.3 Результаты оценки точности визуального тест-определения NO2- для разных шкал

2.4 Техника безопасности

Выводы

Список литературы

ВВЕДЕНИЕ


Определение микроколичеств нитрит-ионов в водах, почвах и пищевых продуктах относится к числу важных задач в связи с широким и зачастую неумеренным применением в качестве удобрений нитратов, продуктом неполного восстановления которых являются нитриты.

Для определения нитрит-ионов чаще всего используют различные спектрофотометрические методики, основанные на образовании окрашенных азосоединений. Эти методики имеют хорошие метрологические характеристики, однако для анализа окрашенных и мутных растворов требуется трудоёмкая пробоподготовка. Кроме того, реагенты, используемые для проведения реакций диазотирования и азосочетания, часто нестабильны и канцерогенны.

В последние годы интенсивно развиваются сорбционно-спектроскопические методы анализа, основанные на сочетании сорбционного концентрирования соединений на пенополиуретанах (ППУ) с последующим их определением непосредственно в фазе сорбента с помощью спектроскопии диффузного отражения.

Нитрит-ионы, взаимодействуя с ППУ в солянокислом водном растворе, образуют окрашенные диазотированные пенополиуретаны. Это даёт возможность применять для определения нитрит-ионов спектроскопию диффузного отражения или тест-методы.

Как известно, многие тест-методы базируются на визуальном наблюдении изменений цвета в результате применения хромогенных реагентов; часто проводится сравнение со стандартной шкалой окрасок. Однако возможности человеческого глаза ограничены; кроме того, существенен субъективный фактор человеческого зрения. С этим связаны трудности создания объективных метрологических характеристик визуальных тест-методов. Выход можно искать не только на пути использования сложных аналитических приборов, но и на пути привлечения другой методологии, а именно цветометрии.

Применение цветометрии позволяет создать равноконтрастную стандартную цветовую шкалу, интенсивность окраски элементов которой будет хорошо различима для человеческого глаза. Это, в свою очередь, позволит повысить точность тестовых хемосорбционных определений.

1 ЛИТЕРАТУРНЫЙ ОБЗОР


1.1 Обзор методов качественного и количественного определения нитрит-ионов


1.1.1 Качественное обнаружение нитрит-ионов [1, с. 33]

Кислоты разлагают все нитриты с образованием газообразного NO2, окрашенного в бурый цвет.

Иодид калия в присутствии H2SO4 окисляется нитритами до свободного J2 (так же действуют и другие окислители: MnO4-, CrO42-, AsO43-).

Уксуснокислый раствор бензидина в присутствии ионов NO2- образует желтоокрашенное соединение. Сульфаниловая кислота и 1-нафтиламин (реактив Грисса-Илосвая) в уксуснокислой среде образуют с нитрит-ионами окрашенный азокраситель. Предложена микрокристаллоскопическая реакция для обнаружения нитрит-ионов: крупинку исследуемого вещества вносят в каплю раствара, содержащего ацетат калия, свинца и меди (ІІ) и подкисленного CH3COOH. Выделяются черные кристаллы K2Pb[Cu(NO2)6]. Этим способом удается открыть до 0,75 мг/мл NO2-. Предельное разбавление 1 : 1500. Присутствие ионов NO3- не мешает реакции. Реакция образования K3[Co(NO2)6]. При смешивании испытуемого раствора с растварами Co(NO3)2, разбавленной уксусной кислоты и KCl в присутствии NO2- появляется желтый кристаллический осадок. Перманганат калия обесцвечивается в кислой среде при нагревании в присутствии нитрит-ионов в результате восстановления марганца до Mn2+.

о-Аминоанилид бензолсульфоновой кислоты (сернокислый раствор) в кислой среде осаждает ионы NO2-.


1.1.2 Гравиметрические методы определения нитрит-ионов

Для количественного определения нитрит-ионов гравиметрические методы имеют меньшее значение по сравнению с другими методами определения. Азотистая кислота образует с 2,4-диамино-6-оксипиримидином труднорастворимое в воде нитросоединение. Но точных гравиметррических методов на основе этой реакции не разработано.

Косвенные гравиметрические методы основаны на весовом определении продуктов реакций, протекающих количественно с нитритами. Такой реакцией может быть взаимодействие бромата серебра с азотистой кислотой; после проведения этой реакции образующийся в результате восстановления бромид серебра может быть взвешен.

Косвенное определение нитрит-ионов осаждением в виде галогенида серебра основано на реакции:


3HNO2 + AgBrO3 = 3HNO3 +AgBr.


Подкисленная уксусной кислотой проба, содержащая нитриты, обрабатывается горячим раствором бромата серебра и получающийся бромид серебра взвешивается.

Параллельные определения выполняются с воспроизводимостью в пределах + 0,1%. Галогениды реагируют подобным образом. Их содержание должно быть определено отдельно и вычтено. [1, с. 52]

Можно обрабатывать нитритный раствор амидосульфоновой кислотой и образующуюся при этом серную кислоту осаждать в виде сульфата бария или определять взвешиванием возникшую потерю в весе. [2] Для анализа образцов простого состава с содержанием определяемого компонента более 1% относительная ошибка гравиметрического определения составляет примерно 0.1 - 1%, с содержанием определяемого компонента 0,1-1% - порядка 5%, для содержаний ниже 0,1% метод фактически непригоден. [3]


1.1.3 Титриметрические методы определения нитрит-ионов

При определении содержания нитритов методы окислительно-восстановительного титрования могут быть основаны как на окислении нитрита сильнодействующим агентом, так и на восстановлении его до ряда продуктов в зависимости от природы восстановителя. Правда, восстановление нитрита в аналитической практике используется редко.

Окисление гипохлоритом кальция применяется для косвенного определения нитритов. Прямое титрование растворов нитритов затруднено из-за малой скорости реакции. Рекомендуемый метод заключается в окислении нитрит-ионов раствором гипохлорита, прибавлении избытка раствора Na3AsO3 и титровании последнего раствором NaOCl в присутствии бромтимолового синего как индикатора до зеленовато-желтого окрашивания.

Ошибка определения NO2- меньше 0,2%. [1, с. 58]

Окисление броматом калия проводят в среде HCl без добавления бромида. Избыток раствора бромата обрабатывают иодидом калия и титруют раствором тиосульфата до КТТ по крахмалу.

Можно обработать раствор, содержащий нитрит, бромом (в извытке) в присутствии пиридина, который ускоряет реакцию. После выдерживания раствора следует добавить иодид калия и оттитровать образовавшийся иод тиосульфатом. [1, с. 67]

Окисление перманганатом проводится только в кислом растворе. Прямое титрование приводит к неудовлетворительному результату. Поэтому рекомендуется обработка нейтрального или щелочного раствора нитрита избытком перманганата, подкисление полученного раствора и последующее иодометрическое титрование.

Другой косвенный метод определения нитрита титрованием перманганатом включает нагревание раствора (1-5 моль/л по HNO3) с избытком KМnO4 и обратное титрование раствором KNO2.

Для прямого и косвенного оксидиметрического определения нитрита применяют титрование раствором перекиси водорода. Полученные этим методом результаты хорошо согласуются с данными иодометрического определения NO2-.

Количественные результаты могут быть получены обработкой раствора нитритов раствором сульфата церия в кислой среде и последующим обратным титрованием избытка последнего стандартным раствором оксалата натрия.

Нитрит можно количественно оттитровать раствором тетраацетата свинца (IV), который получают растворением Pb3O4 (красный свинец) в ледяной уксусной кислоте при умеренной температуре. Прямое титрование проводится в 1М растворе NaCl по реакции:


NO2- + Pb4+ +H2O = NO3- + Pb2+ +2H+.


Титрование феррицианидом проводится в нейтральном растворе:


NO2- +2Fe(CN)63- +H2O = NO3- +2Fe(CN)64- +2H+.


Полученный по реакции ферроцианид титруется стандартным раствором сульфата церия.

Тиомеркуриметрическое определение - чувствительный метод определения нитритов. Установлено, что реакция между NO2- и HSCH2COOH протекает довольно быстро и количественно с образованием ONSCH2COOH – достаточно прочного соединения в кислых и не слишком щелочных растворах. Это дает возможность определить NO2- титрованием раствором о-оксимеркуриобензоата. При определении 0,45-28 мг/мл NaNO2 полученные результаты хорошо совпадают с данными, найденными перманганатометрическим методом. Определению NO2- этим методом не мешает присутствие многих органических веществ, реагирующих с KМnO4.

Восстановление солями титана (III). При использовании раствора титана (III) в качестве восстановителя необходимо соблюдать особенно тщательно условия его хранения, и тогда можно быстро получить надёжные результаты при титровании нитрит-ионов:

NO2- + 6Ti (III) + 4H2O = NH3 + 6TiO2+ + 5H+.


Нитрит восстанавливается количественно, а избыток хлорида титана определяется обратным титрованием стандартным ратвором Fe(III) c роданидом в качестве внутреннего индикатора.

Восстановление гидразином. Метод заключается в добавлении раствора нитрита к избытку сульфата гидразина в разбавленной H2SO4 и последующем обратном титровании избытка гидразина стандартным раствором иода. Лучшие результаты были получены при потенциометрическом титровании гидразина раствором нитрита натрия.

Восстановление гидроксиламином. Избыток стандартного раствора гидрохлорида гидроксиламина смешивают с анализируемым раствором. При этом происходит восстаноиление нитрита до окиси азота и азота:


2NO2- + 2NH2OH + 2Н+ = 2NO + N2 +4H2O.


Избыток гидроксиламина определяют обратным титрованием стандартным раствором гидроокиси натрия со смешанным индикатором – метиленовым голубым и фениловым красным (в спирте). [4]

Погрешность титриметрических методов определения составляет ~0.5%. Эти методы позволяют определить ионы NO2- с концентрацией в пределах 0.01-0.5 моль/л (0.46-23 г/л). [3]


1.1.4 Электрохимические методы определения нитрит-ионов


1.1.4.1 Вольтамперометрия

Нитрит-ионы можно определять в присутствии нитрат-ионов вольтамперометрически с применением платинового электрода для концентраций NO2- в пределах 10-6-10-3 моль/л при рН 0 – 8. При рН 3,5 - 8 потенциал полуволны не зависит от рН, причем на электродах протекает реакция NO2- = NO2+ e ; при рН 0 - 3 протекает реакция HNO2 = NO2+H++e .

В случае окисления нитрит-иона на вращающемся микродисковом Pt-аноде высота волны пропорциональна концентрации ионов и реакция необратима. Описан модифицированный метод полярографического определения нитрита в присутствии восстановленной формы аскорбината на фоне, содержащем комплекс Cr3+ с глицерином, при рН 6,0-7,0. Определяется концентрация NO2- до 20 ppm.

Достаточно быстрый (10 мин) и точный (ошибка порядка 1%) косвенный полярографический метод определения нитрита основан на восстановлении 4-нитрозо-2,6-ксиленола, образующегося при реакции NO2- с 2,6-ксиленолом в смеси (5:4:1) H2SO4 с водой и уксусной кислотой. Предельный ток, измеряемый при -0,15в, пропорционален концентрации нитрит-ионов в интервале 0 – 14 мкг/мл. 100-кратный избыток NO3- опрелелению NO2- не мешает. [5]

Определение нитрит-иона основано на измерении тока окисления NO2- при использовании различных окислителей (сулфаминовой кислоты, перманганата калия, хлорамина Т и др.), а также на использовании вращающегося платинового электрода, на применении поляризуемого Рt- микроэлектрода и Ag/AgCl-электрода для чёткого определения точки эквивалентности. Пределы определяемых концентраций нитрит-ионов составляют 10-5-10-2 моль/л. Ошибка определения в интервале 10-2-10-3 моль/л составляет в среднем 1%; при концентрации NO2- 10-4-10-5 моль/л она возрастает до 2-3%. Ионы NO3- не мешают определению. [4]


1.1.4.2 Потенциометрическое титрование [6]

Нитриты можно определять ацидиметрически, используя титрование в неводных растворителях. Достаточно хорошая воспроизводимость результатов была достигнута при титровании нитрита в смеси этиленгликоля и пропанола (или хлороформа). Титрантом являлся раствор 0,1 моль/л хлорной кислоты в той же смеси. КТТ устанавливали визуально (с внутренним индикатором тимоловым голубым) или потенциометрически со стеклянным и каломельным электродами. С теми же электродами нитрит-ионы могут быть определены (и в присутствии нитратов) потенциометрическим титрованием гидроокисью тетрабутиламмония в бензолметаноловой смеси (10:1). Точность определения +0.5%.

Разработаны методы определения нитратов, нитритов и их смесей титрованием в неводных растворах. Эти методы основаны на различном поведении нитрат- и нитрит-ионов при титровании в неводных средах. Определение NO2- основано на прямом потенциометрическом титровании в среде метанола (или смеси метанола с ацетоном) неводными растворами кислот, в частности метаноловым или метилэтилкетоновым раствором HСlO4. Точность определения +10%.


1.1.4.3 Кулонометрическое титрование

Разработаны условия кулонометрического титрования нитрит-ионов с помощью электрогенерированного брома. Рабочий электрод – Pt-пластинка с поверхностью около 8 см2; противоэлектрод – Pt-спираль – отделён от исследуемого раствора перегородкой из пористого стекла.

Микроколичества нитрит-ионов определяют кулонометрически посредством окисления NO2- избытком электролитически генерированного Mn3+ и обратного кулонометрического титрования последнего электролитически генерированным Fe2+. Генерирование проводят на платиновом или угольном электроде. Кислород предварительно удаляют из раствора продуванием инертного газа. При определении 0,3 – 65 мкг/мл NO2- стандартное отклонение равно 0,2 – 1,6%. [1, с. 80]

Нитрит-ион определяется высокочастотным титрованием в среде 30% этанола 0,1М раствором HCl. КТТ измеряется при 130 Мгц и соответствует образованию неионизованной азотистой кислоты. На точность определения 10-50 мг/мл нитрит-иона (около 2%) не влияет присутствие пятикратного избытка нитрата. [4]

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.