реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Расчёт многокорпусной выпарной установки

Расчёт многокорпусной выпарной установки

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Омский Государственный Технический Университет

Кафедра «Химическая технология органических веществ»

Специальность «Химическая технология переработки нефти и газа»

КУРСОВОЙ ПРОЕКТ

На тему: «Расчёт многокорпусной выпарной установки»

по дисциплине «Процессы и аппараты химической технологии»

Омск 2010

Содержание

Введение

Основные условные обозначения

1. Определение поверхности теплопередачи выпарных аппаратов

1.1 Расчёт концентраций упариваемого раствора

1.2 Определение температур кипения растворов

1.3 Расчёт полезной разности температур

1.4 Определение тепловых нагрузок

1.5 Выбор конструкционного материала

1.6 Расчёт коэффициентов теплопередачи

1.7 Распределение полезной разности температур

1.8 Уточнённый расчёт поверхности теплопередачи

2. Определение толщины тепловой изоляции

3. Расчёт барометрического конденсатора

3.1 Определение расхода охлаждающей воды

3.2 Расчёт диаметра барометрического конденсатора

3.3 Расчёт высоты барометрической трубы

4. Расчёт производительности вакуум-насоса

5. Расчёт диаметров трубопроводов и подбор штуцеров

6. Расчёт насоса для подачи исходной смеси

7. Расчёт теплообменника-подогревателя

8. Расчёт вспомогательного оборудования выпарной установки

8.1. Расчёт конденсатоотводчиков

8.1.1 Расчёт конденсатоотводчиков для первого корпуса выпарной установки

8.1.2 Расчёт конденсатоотводчиков для второго корпуса выпарной установки

8.1.3 Расчёт конденсатоотводчиков для третьего корпуса выпарной установки

8.2 Расчёт ёмкостей

9. Механические расчёты основных узлов и деталей выпарного аппарата

9.1 Расчёт толщины обечаек

9.2 Расчёт толщины днищ

9.3 Определение фланцевых соединений и крышек

9.4 Расчет аппарата на ветровую нагрузку

9.5 Расчёт опор аппарата

Заключение

Библиографический список

Приложения

Введение


В химической промышленности выпариванию подвергают растворы твердых веществ (главным образом водные растворы щелочей, солей и др.), а также растворы высококипящих жидкостей, обладающих при температуре выпаривания очень малым давлением пара (некоторые минеральные и органические кислоты, многоатомные спирты и др.).

Концентрированные растворы и твердые вещества, получаемые в результате выпаривания, легче и дешевле перерабатывать, хранить и транспортировать.

Тепло для выпаривания можно подводить любыми теплоносителями, применяемыми при нагревании. Однако в подавляющем большинстве случаев в качестве греющего агента при выпаривании используют водяной пар, который называют греющим или первичным.

Пар, образующийся при выпаривании кипящего раствора, называют вторичным. Тепло, необходимое для выпаривания раствора, обычно подводится через стенку, отделяющую теплоноситель от раствора.

Процессы выпаривания проводят под вакуумом, при повышенном и атмосферном давлениях. Выбор давления связан со свойствами выпариваемого раствора и возможностью использования тепла вторичного пара.

При выпаривании под вакуумом становится возможным проводить процесс при более низких температурах, что важно в случае концентрирования растворов веществ, склонных к разложению при повышенных температурах. Кроме того, при разрежении увеличивается полезная разность температур, что позволяет уменьшить поверхность нагрева аппарата, а также использовать греющий агент более низких температуры и давления. Вследствие этого выпаривание под вакуумом широко применяют для концентрирования высококипящих растворов. Применение вакуума дает возможность использовать в качестве греющего агента, кроме первичного пара, вторичный пар самой выпарной установки. При выпаривании под давлением выше атмосферного также можно использовать вторичный пар, что позволяет лучше использовать тепло. Однако выпаривание под избыточным давлением сопряжено с повышением температуры кипения раствора, поэтому данный способ применяется лишь для выпаривания термически стойких веществ.

При выпаривании при атмосферном давлении вторичный пар не используется и обычно удаляется в атмосферу.

Наиболее распространены многокорпусные выпарные установки, состоящие из нескольких выпарных аппаратов, в которых вторичный пар каждого предыдущего корпуса направляется в качестве греющего в последующий корпус. При этом давление в последовательно соединенных корпусах снижается таким образом, чтобы обеспечить разность температур между вторичным паром из предыдущего корпуса и раствором кипящем в данном корпусе, т.е. создать необходимую движущую силу процесса выпаривания. В этих установках первичным паром обогревается только первый корпус, следовательно, в многокорпусных установках достигается значительная экономия первичного пара по сравнению с однокорпусными установками той же производительности.

По относительному движению греющего пара и выпариваемого раствора выпарные установки разделяют на несколько групп :

а) прямоточные выпарные установки для растворов, обладающих высокой температурной депрессией;

б) противоточные - для растворов обладающих высокой вязкостью при повышении их концентрации (в этих схемах между ступенями ставят насосы);

в) установки с параллельным питанием - для легко кристаллизующихся растворов;

г) установки с отпуском части вторичных паров потребителем;

д) выпарные установки со смешанным питанием корпусов для растворов с повышенной вязкостью.

При больших производительностях (от нескольких кубических метров в час и выше), что характерно для промышленности, выпаривание проводят по непрерывному принципу. В аппаратах непрерывного действия обычно создают условия для интенсивной циркуляции раствора, т.е. в таких аппаратах гидродинамическая структура потоков близка к модели идеального смешения. Поэтому концентрация раствора в таких аппаратах ближе к конечной, что приводит к ухудшению условий теплопередачи (т.к., с повышением концентрации раствора увеличивается его вязкость и, следовательно, снижается коэффициент теплоотдачи от стенки к раствору).

Периодическое выпаривание проводят при малых производительностях и необходимости упаривания раствора до существенно высоких концентраций.

Обоснование выбора установки.

В данном проекте рассматривается многокорпусная вакуум-выпарная установка с естественной циркуляцией раствора в корпусах и вынесенной греющей камерой (тип 1, исполнение 2), работающая при прямоточном движении греющего пара и раствора.

Достоинства проведения выпаривания в установке с разрежением в последнем корпусе рассмотрены выше. Это возможность проводить процесс при более низких температурах; увеличение полезной разности температур и, следовательно, уменьшение поверхности нагрева аппарата, а также возможность использовать в качестве греющего агента вторичный пар самой установки. Использование многокорпусной установки дает экономию греющего пара и тепла.

Использование многокорпусной установки дает экономию греющего пара и тепла. При размещении греющей камеры вне корпуса аппарата имеется возможность повысить интенсивность выпаривания за счет увеличения длины кипятильных труб. Аппараты с вынесенной греющей камерой имеют кипятильные трубы, длины которых часто достигают 6-7 метров. Они работают при более интенсивной циркуляции, что обусловлено тем, что циркуляционная труба не обогревается, а подъемный и опускной участки циркуляционного корпуса значительную высоту. Выносная греющая камера легко отделяется от корпуса аппарата, что облегчает и ускоряет чистку и ремонт.

Описание технологической схемы.

Технологическая схема процесса выпаривания представлена на чертеже 1. Исходный разбавленный раствор из емкости Е1 центробежным насосом Н1 подается в теплообменник Т (где подогревается до температуры близкой к температуре кипения), а затем в первый корпус АВ1 выпарной установки. Предварительный подогрев раствора повышает интенсивность кипения в выпарном аппарате АВ1

Первый корпус обогревается свежим водяным паром. Вторичный пар, образующийся при концентрировании раствора в первом корпусе, направляется в качестве греющего во второй корпус выпарной установки АВ2. Сюда же поступает частично сконцентрированный раствор из первого корпуса АВ1. Аналогично третий корпус АВ3 обогревается вторичным паром второго корпуса АВ2 и в нем производится концентрирование раствора, поступившего из второго корпуса АВ2.

Самопроизвольный переток раствора и вторичного пара в следующие корпуса возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в барометрическом конденсаторе смешения КБ (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум – насосом НВ). Смесь охлаждающейся воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором. Образующийся в третьем корпусе АВ3 выпарной установки концентрированный раствор центробежным насосом Н2 подается в промежуточную емкость упаренного раствора Е2. Конденсат греющих паров из выпарных аппаратов и теплообменника выводится с помощью конденсатоотводчиков.


Основные условные обозначения


с – теплоёмкость, дж/(кг∙К);

d – диаметр, м;

D – расход греющего пара, кг/с;

F – поверхность теплопередачи, м2;

G – расход, кг/с;

g – ускорение свободного падения, м/с2;

Н – высота, м;

I – энтальпия пара, кДж/кг;

I – энтальпия жидкости, кДж/кг;

К – коэффициент теплопередачи, Вт/(м2 ∙ К);

Р – давление, Мпа;

Q – тепловая нагрузка, кВт;

q – удельная тепловая нагрузка, Вт/м2;

r – теплота парообразования, кДж/кг;

T, t – температура, град;

W, w – производительность по испаряемой воде, кг/с;

x – концентрация, % (масс.);

α – коэффициент теплоотдачи, Вт/(м2 ∙ К);

ρ – плотность, кг/м3;

μ – вязкость, Па ∙ с;

λ – теплопроводность, Вт/(м ∙ К);

σ – поверхностное натяжение, Н/м;

Re – критерий Рейнольдса;

Nu – критерий Нуссельта;

Pr – критерий Прандтля.

Индексы:

1, 2, 3 – первый, второй, третий корпус выпарной установки;

в – вода;

вп – вторичный пар;

г – греющий пар;

ж – жидкая фаза;

к – конечный параметр;

н – начальный параметр4

ср – средняя величина;

ст – стенка.


1. Определение поверхности теплопередачи выпарных аппаратов


Поверхность теплопередачи каждого корпуса выпарной установки определяют по основному уравнению теплопередачи, м2:


 (1)


Для определения тепловых нагрузок Q, коэффициентов теплопередачи К и полезных разностей температур Δtп необходимо знать распределение упариваемой воды, концентраций растворов и их температур кипения по корпусам. Эти величины находят методом последовательных приближений.

Первое приближение.

Производительность установки по выпариваемой воде определяют из уравнения материального баланса:


 (2)


где – расход упариваемого раствора, кг/с; начальная концентрация раствора, % (масс.); конечная концентрация раствора, % (масс.).

Подставив, получим:

 кг/с.

1.1 Расчёт концентраций упариваемого раствора


Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением:



где производительность по испаряемой воде в первом корпусе, кг/с;  производительность по испаряемой воде во втором корпусе, кг/с;  производительность по испаряемой воде в третьем корпусе, кг/с;

Тогда


 кг/с,

 кг/с,

 кг/с.


Далее рассчитывают концентрации растворов в корпусах:


 (7,9 %),

 (12,24 %),

 (30%).


Концентрация раствора в последнем корпусе х3 соответствует заданной концентрации упаренного раствора хк.

1.2 Определение температур кипения растворов


Общий перепад давлений в установке равен, МПа:


 (3)


где давление греющего пара в первом корпусе, МПа; давление греющего пара в барометрическом конденсаторе, МПа.

Подставив, получим, МПа:



В первом приближении общий перепад давлений распределяют между корпусами поровну. Тогда давления греющих паров в корпусах (в МПа) равны:


РГ1 = 0,4


Давление пара в барометрическом конденсаторе:



Что соответствует заданной величине РБК.

По давлениям паров находим их температуры и энтальпии [2]:




Давление, Мпа

Температура, °С

Энтальпия, кДж/кг

Рг1 = 0,4

tг1 = 143,5

I1 = 2739,6

Рг2 = 0,277

tг2 = 131

I2 = 2722

Рг3 = 0,153

tг3 = 112,1

I3 = 2708,4

Рбк = 0,03

tбк = 69

Iбк = 2623,4






При определении температуры кипения растворов в аппаратах исходят из следующих допущений. Распределение концентраций раствора в выпарном аппарате с интенсивной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимают равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяют при конечной концентрации.

Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости. Температуру кипения раствора в корпусе принимают соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь от температурной (Δ’), гидростатической (Δ”) и гидродинамической (Δ”’) депрессий.

Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчётах принимают Δ”’ = 1,0 – 1,5 град на корпус. Примем для каждого корпуса Δ”’ = 1 град. Тогда температуры вторичных паров в корпусах (в °С) равны:


 °С

 °С

 °С

Сумма гидродинамических депрессий:


 °С


По температурам вторичных паров определим их давления [2]:


Температура, °С

Давление, МПа

tвп1 = 132

Рвп1 = 0,2866

tвп2 = 113,1

Рвп2 = 0,1579

tвп3 = 70

Рвп3 = 0,0312


Гидростатическая депрессия обусловлена разностью давлений в среднем слое кипящего раствора и на его поверхности. Давление в среднем слое кипящего раствора Рср каждого корпуса определяется по уравнению:


 (4)


где РВП – давление вторичных паров, МПа; Н – высота кипятильных труб в аппарате, м; ρ – плотность кипящего раствора, кг/м3; ε – паронаполнение (объёмная доля пара в кипящем растворе), м3/м3.

Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата FОР. При кипении водных растворов можно принять удельную тепловую нагрузку аппарата с естественной циркуляцией q = 20000 – 50000 Вт/м2. Примем q = 20000 Вт/м2. Тогда поверхность теплопередачи первого корпуса ориентировочно равна:


 м2


где r1 = 2178,2 кДж/кг – теплота парообразования вторичного пара [2].

По ГОСТ 11987-81 трубчатые аппараты с естественной циркуляцией и вынесенной греющей камерой (тип 1, исполнение 2) состоят из кипятильных труб высотой 4 и 5 м при диаметре dН = 38 мм и толщине стенки δСТ = 2 мм. Примем высоту кипятильных труб Н = 4 м. При пузырьковом (ядерном) режиме кипения паронаполнение составляет ε = 0,4 – 0,6. Примем ε = 0,5. Плотность водных растворов при температуре 35 °С и соответствующих концентрациях в корпусах равна [3]:

ρ1 = 1072 кг/м3; ρ2 = 1095 кг/м3; ρ3 = 1323 кг/м3.

При определении плотности растворов в корпусах пренебрегаем изменением её с повышением температуры от 35 °С до температуры кипения ввиду малого значения коэффициента объёмного расширения и ориентировочно принятого значения ε.

Давления в среднем слое кипятильных труб корпусов (в Па) равны:



Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя [2]:

Страницы: 1, 2, 3, 4, 5, 6



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.