реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Изучение кластеров и их свойств в области химии

Изучение кластеров и их свойств в области химии

Министерство образования и науки Украины

Реферат по теме:

«Изучение кластеров и их свойств в области химии»












Донецк 2008

Введение

Эта работа посвящена непостоянным группам частиц в химии. Важное значение таких групп уже давно осознавалось в отдельных областях химии - учении о растворах, коллоидной химии, теории кристаллизации, поэтому понятие возникло гораздо раньше, чем подходящий термин. В разных областях химии утверждалось независимо и под собственным именем. Ассоциаты, зародыши, комплексы, сиботаксические группы, агрегаты, сольваты - все эти названия в конце концов обозначают примерно одно и то же. Разнобой в терминологии не случаен, он отражает историю осмысления понятия. Ныне слово «кластер» оказалось своего рода знаменем, под которым собираются ограниченные коллективы частиц из самых разных областей; представление о кластерах как малых коллективах имеет значение не только в химии, но и в астрономии, физике, биологии, социологии, по-видимому, оно прочно утверждается в общей теории систем (это обусловливает популярность термина). Но мы ограничиваемся химическими объектами.

Если отвлечься от неизбежных злоупотреблений модой, то причины бурного роста химической литературы, в которой фигурирует «кластер», оказываются вполне серьезными и вескими.

Современные физико-химические методы эксперимента позволили перейти от гипотез о существовании непостоянных групп к их фактическому изучению, а развитие вычислительной техники сделало возможным теоретическое «построение» кластеров и расчет их свойств при тех или иных предположениях о взаимодействиях между членами группы.

Эти исследования, захватывающие все глубже строение и превращение объектов химии (в особенности недоступный прежде мир короткоживущих форм и состояний), приводят к пониманию того, что кластеры - не экзотика, а весьма общая форма (или состояние) вещества.

Свидетельство злободневности темы - появление не только многих сотен и даже тысяч статей, более или менее частных, но и попытки ее общего обзора.

1. Общие сведенья о понятии «кластер»


Представления о непостоянных агрегатах атомов и молекул восходят ко второй половине прошлого века, когда в химии утвердилось атомно-молекулярное учение, а в физике - «кинетическая теория материи». Такие представления не раз выдвигались для объяснения поведения жидкостей и жидких растворов, образования осадков и коллоидов, электропроводности жидких электролитов и электрических разрядов в газах. К.М. Гульдберг и П. Вааге, Д.И. Менделеев, В. Рамзай в химии, Дж.К. Максвелл, В.К. Рентген, П. Ланжевен в физике и много других ученых, менее знаменитых, так или иначе участвовали в постепенном становлении понятия, ныне обозначаемого термином «кластер». Сам этот термин впервые появился в научной литературе в 1937 году в известных работах Дж. Е. Майера по статистической механике неидеальных газов. Первоначально он означал группу атомов или молекул, выделяемую в газе по определенным формально-математическим признакам. Здесь введение кластеров было еще чисто математическим шагом. (Наиболее ясно это иллюстрируется тем, что в теории Майера число кластеров может быть отрицательным.) Однако вскоре, в особенности благодаря Я.И. Френкелю, стало ясно, что при описании неидеальных газов, и особенно предпереходных состояний, можно опираться на представление о действительном образовании групп, или агрегатов, молекул (Я.И. Френкель назвал их «гетерофазными флюктуациями»). Строгая теория неидеальных газов, основанная на представлении о физических кластерах, была развита в статистической механике Т. Хиллом в 1955 году.

В течение 50-х годов название и понятие «кластер» стало весьма употребительным в теориях конденсации и вообще образования новой фазы. На конец десятилетия приходится и дальнейшее распространение области применения этого понятия: кластерными соединениями, по предложению Ф. Коттона, были названы химические соединения (например, многоядерные карбонилы металлов и их производные), содержащие несколько связанных друг с другом атомов металла, которые окружены лигандами.

В течение второй половины 60-х годов представления о кластерах делаются все более популярными в разных областях химии, в теории жидкого состояния, в учении о растворах и соединениях непостоянного состава (здесь новым явилось продвижение представления о кластерах из области исследований твердых растворов в смежную область нестехиометрических твердых соединений), в плазмохимии, в элементоорганической химии. В конце 60-х - начале 70-х годов кластеры становятся объектом теоретических («компьютерных») исследований.

Можно считать, что к началу нашего десятилетия становление общего понятия «кластер» завершилось.

Разные авторы вкладывают в термин «кластер» неодинаковое содержание, хотя во всех случаях сохраняется оттенок первоначального значения этого английского слова (cluster) - груда, скопление, пучок, гроздь, группа. В дальнейшем мы будем придерживаться следующего определения: кластер - это группа из небольшого (счетного) и, вообще говоря, переменного числа взаимодействующих частиц (атомов, молекул, ионов).


2. Частицы в кластере


Естественно спросить, каковы нижняя и верхняя границы числа частиц в кластере? Ответ на первую половину вопроса очевиден: минимальное число членов, образующих группу, равно двум. Верхняя граница, напротив, размыта и неотчетлива. Но ясно, что она должна находиться в той области, где добавление еще одного члена уже не изменяет свойств кластера: в этой области и заканчивается переход из количества в качество. Ниже мы увидим, что эта граница не вполне однозначна, но практически большая часть изменений, существенных для химика, заканчивается при ~103 частицах в группе.

Следует различать свободные кластеры и стабилизированные теми или иными факторами; в последнем случае кластер имеет более сложный состав и приобретает структуру, в которой целесообразно выделять «тело» кластера (т. е. собственно группу взаимодействующих частиц рассматриваемого типа) и стабилизирующие элементы, например «оболочку» из лигандов, или центральную частицу (часто это ион), или совокупность того и другого. Наличие или отсутствие стабилизации резко сказывается на поведении кластеров, и прежде всего на продолжительности их жизни: для стабилизированных кластеров она такая же, как для обычных молекул, для нестабилизированных нижней границей времени жизни разумно считать продолжительность столкновения в газокинетическом смысле, т. е. 10~13-К)-12 с; то же можно распространить и на простые и сложные кластеры в жидкой фазе. С точки зрения химика, кажется правильным считать кластерами только такие образования, которые существуют достаточно долго, чтобы участвовать в химическом превращении в качестве самостоятельной единицы. При этом остается неясным, при какой же продолжительности жизни кластеров их образование становится кинетически ощутимым. Фактических данных для ответа на этот вопрос мало, но с ростом «разрешающей способности» экспериментальных методов постепенно выясняется важная кинетическая роль даже весьма короткоживущих состояний.

Разнообразие типов кластеров определяется возможностью сочетания различных сред и способов стабилизации с множеством вариантов построения тела кластера из частиц той или иной природы.

Не приводя здесь развернутой классификации, поясним это на примере. В системах, состоящих из компонента А, образующего тело кластеров Ag, и компонента В, функция последнего может отвечать одному из четырех вариантов: 1) ВАЯ: В - заряд (электрон, позитрон) или центральная частица (ион, молекула); 2) АВ,: В - лиганд; 3) АА, Воэ: В - матрица; 4) AgB: В - второй компонент тела кластера. Реализация этих вариантов различна в газовых, жидких, аморфных и кристаллических средах. Так, для варианта «BAg» примерами являются соответственно: зародыши пара, конденсирующегося на молекулярных ядрах; сольваты ионов и молекул в жидких растворах; металлические кластеры в металлсилицидных, металлфосфидных и других стеклах; субоксиды щелочных металлов. Для варианта «АВ» примерами служат мицеллы поверхностно активных веществ (ПАВ) в жидких средах; кластеры воды в аморфных органических полимерах; кластерные кристаллы (металлы в цеолитах) и, наконец, адсорбаты кластерной дисперсности для сред, представляющих собой межфазные поверхности. Аналогично этому для разных сред легко найти случаи, отвечающие вариантам «АгВг» и «AgBj». При трех компонентах - А, В и С - возможны уже десять вариантов их функций в построении тела кластера и его стабилизации. И почти для каждой из сред, включая меж-, фазные поверхности, можно указать примеры реализации этих вариантов.

Таково разнообразие наших объектов.


3. Методы исследования


В принципе для исследования свойств и поведения кластеров различных типов могут быть использованы решительно все методы, какими пользуется химия вообще. Однако пригодность и степень эффективности того или иного из них критическим образом зависят от устойчивости исследуемых кластеров; естественно, что к устойчивым системам применимы более многочисленные и более разнообразные по принципам методы наблюдений и измерений. Кроме того, имеет значение, находятся кластеры в равновесии со средой или нет: в первом случае концентрация их постоянна во времени, хотя и мала для короткоживущих объединений, неравновесные же группы частиц приходится специально создавать.

При малой продолжительности жизни кластеров внимание исследователя невольно сосредоточивается на процессах их возникновения и разрушения, если же продолжительность жизни велика, то занимаются прежде всего изучением «стационарных» свойств этих объектов.

При работе с прочно стабилизированными или хотя бы с равновесными кластерами их приготовление и исследование легко могут быть разделены во времени и пространстве.

Для получения стабилизированных кластеров чаще всего используют процессы образования новой фазы: эти процессы буквально останавливают в их зародыше, фиксируя тем или иным способом возникающие группы частиц.

Принцип остановки агрегации лежит в основе различных способов синтезов кластерных соединений из одноядерных и олигоядерных комплексов металлов. Этот же прием хорошо известен в гетерогенном катализе при получении «сверхвысокодисперсных» металлов-катализаторов, закрепленных на носителях.

Своеобразными носителями для металлических кластеров стали в последние годы матрицы из твердых газов, на которых конденсируют пары металлов. Это важный и обещающий способ контролируемой стабилизации небольших металлических кластеров и вместе с тем способ синтеза не обычных кластерных соединений. Используя матрицы из твердой окиси углерода, получили, например, Ni2CO и Ni4CO, а на матрицах из твердого кислорода - Rh2(O2)n (л=1-4) и Rhs(O2)n, (m=2 или 6).

Реже для получения стабилизированных кластеров при" бегают к дезагрегации сплошной фазы. Интересный при" мер - введение жидких металлов в цеолиты под давлением» после снятия давления 15-20-атомные кластеры галлия» олова, висмута остаются замурованными в полостях цеолита, образуя своего рода «кластерный кристалл». Это создает редкую возможность изучать поведение упорядоченного коллектива кластеров.

Для исследования стабилизированных кластеров применяют те же методы, что и в физической химии вообще, чаще других - спектральные (особенно в дальней инфракрасной области) и радиоспектроскопические, прежде всего методы ядерного магнитного резонанса (ЯМР).

Техника исследований кластеров приобретает своеобразие тогда, когда объекты являются неравновесными и короткоживущими. В таких исследованиях - они относятся главным образом к кластерам в газовой среде - экспериментальные устройства включают в себя сопряженные узлы генерации, выделения (если нужно) и собственно исследования кластеров.

Неравновесные кластеры в газовой среде получают путем адиабатического расширения пара в устройствах различных типов. Наибольший стаж имеет камера Вильсона (система с поршневым расширением). Много позже были созданы методы работы с потоками, расширяющимися в сверхзвуковых соплах; сюда же можно отнести и технику молекулярных пучков.

Кстати сказать, пучки кластеров дейтерия или трития предложено вводить в горячую плазму при управляемом термоядерном синтезе. Эффективность такого способа подачи топлива определяется значительно большей плотностью вещества в кластерных пучках по сравнению с молекулярными. Этот проект - главная цель фундаментальных исследований кластеров, которые ведутся в одной из крупных лабораторий ФРГ в Карлсруэ.

Заряженные кластеры в газовой среде генерируют посредством электрического разряда или (ныне все чаще) путем воздействия ионизирующих излучений. Различные излучения используют для создания заряженных кластеров и в газах, и в. конденсированных средах. Ионная бомбардировка поверхности твердых тел позволяет получать также и заряженные, и нейтральные кластеры в паровой фазе обычно в сверхравновесных концентрациях.

Экспериментальные трудности исследования свободных кластеров в неравновесных системах усугубляются практической невозможностью получения кластеров одного размера. Поэтому измеряемые величины часто представляют результат усреднения, при котором возможно «замазывание» немонотонных зависимостей свойство - число частиц в кластере.

Наиболее распространенным и наиболее прямым методом наблюдения кластеров в газовой фазе является в настоящее время масс-спектрометрия. Предложено много вариантов систем напуска, обеспечивающих доставку кластеров из зоны, где они образовались, в ионный источник спектрометра. С этой стороной техники дело обстоит достаточно удовлетворительно. Важно также уменьшить разрушение кластеров в ионном источнике под влиянием ионизирующего излучения. Традиционные приборы, в которых ионизация объекта достигается электронным ударом, в этом отношении малоудачны; эффективнее фотоионизационные источники, хотя и в этом случае первоначальные концентрации кластеров могут искажаться. Разумеется, степень искажения сильно зависит от прочности кластера, а также от продолжительности промежутка времени между ионизацией и регистрацией иона. («Времяпролетная» масс-спектрометрия в этом смысле предпочтительнее.)

Для характеристики ионных кластеров в газах масс-спектрометрия также весьма эффективна, но здесь распространен и другой метод-измерение подвижности ионов. В 70-х годах для исследования свободных кластеров, возникающих в сверхзвуковых газовых струях, был применен метод дифракции электронов; удалось регистрировать дифракционную картину от кластеров аргона из ~50 атомов с возрастом ~2-10~4 с.

 Перспективна и оптическая спектроскопия кластерных пучков: их низкая температура сильно упрощает картину спектра и делает возможным его анализ.

В исследованиях поверхностных кластеров эффективна автоионная микроскопия и фотоэлектронная спектроскопия.

В последнее время приобретают значение новые спектроскопические методы изучения вещества - измерения рентгено- и фотоэлектронных спектров, но в исследованиях свободных кластеров их еще не применяли, тем более что анализ полученных данных здесь сложен и неоднозначен. По-видимому, наиболее информативными станут комплексные методы, сочетающие масс-спектрометрию, в особенности времяпролетную масс-спектрометрию высокого разрешения, со спектральными методами разных диапазонов частот. В частности, большой интерес представляет лазерная спектроскопия комбинационного рассеяния света. Этот метод эффективен для измерения низких частот колебаний, характерных для связей между частицами в кластерах. Еще важнее, что он может обеспечить весьма быструю, до времен порядка 10~8 с, регистрацию спектров, а значит, исследование короткоживущих кластеров.

 Вторая большая категория методов исследования - расчетно-теоретическая.

Компьютерная техника оказывается «математическим микроскопом», а иногда и сверхскоростной кинокамерой или даже и тем и другим, словом, инструментом, который позволяет наблюдать быстрые превращения кластеров.

Ценность машинных методов тем выше, чем труднее объект для прямого экспериментального изучения; таковы в особенности свободные кластеры из нескольких десятков частиц.

Расчетно-теоретические методы исследования следует подразделить по уровню детализации на молекулярно-физические и квантовомеханические. Методы, опирающиеся на идеи молекулярной физики, состоят в машинном анализе поведения кластера как системы N частиц, взаимодействие между которыми описывается некоторым потенциалом (например, потенциалом Лен нарда-Джонса). В квантово-механических методах кластер рассматривается как молекула; при тех или иных допущениях исследуются взаимодействия электронов в этой системе. Расчет свойства кластеров на основе представлений молекулярной физики был начат в связи с необходимостью определения термодинамических характеристик малых зародышей в теории конденсации: совершенно очевидно, что «капиллярное приближение» классической теории конденсации, основанное на использовании величины поверхностной энергии малых капель, непригодно для частиц из ~ 10 атомов. Первая работа в этом направлении (в ней были рассмотрены кластеры максимум из восьми частиц) относится к 1952 году. В такого рода вычислениях и время счета, и необходимый объем машинной памяти возрастают пропорционально кубу числа атомов в кластере, поэтому исследования более крупных кластеров начались много позже, примерно через полтора десятилетия, когда возможности вычислительной техники стали достаточными, а решаемые задачи - еще более актуальными (к общим потребностям развития теории конденсации добавились запросы со стороны технологии получения конденсированных пленок, в особенности в технике полупроводников и электронике). Со второй половины 60-х годов начинается разработка специальных расчетных методов для исследования свойств кластеров на основе представлений молекулярной физики.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.