реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы

Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы














Реферат


"Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы"


Введение


Тонкопленочные металлополимерные материалы (металлизированные полимеры, металлические изделия с тонким полимерным покрытием, многослойные системы и др.), формируемые методами вакуумной технологии, характеризуются высокими служебными свойствами и эффективно используются при решении различных технических задач [1–4].Их применение во многом определило достижения оптики, электро- и радиотехники, химических технологий и ряда других отраслей промышленности. При этом в ближайшее время возможно еще более широкое использование вакуумно-плазменных методов при формировании тонкопленочных металлополимерных материалов, что связано, во первых, с развитием технической оснащенности, с разработкой и внедрением высокоэффективных технологических процессов, в частности, с использованием непрерывных автоматических вакуумных установок и, во вторых, с заметными успехами в изучении закономерностей осаждения вакуумных металлических и полимерных покрытий.

Основной особенностью формирования данных материалов является протекание сложных физико-химических процессов на границе раздела фаз, их зависимость от условий и режимов осаждения слоев. Именно по этой причине рассмотрение даже самой простой в технологическом отношении двухслойной системы металл-полимер предполагает, в частности, учет состояния граничного полимерного слоя как основного ее элемента [5,6]. Структура и свойства данного слоя определяются кинетикой протекания диффузионных, контактных химических процессов, имеющих, как правило, релаксационную природу и зависящих от природы взаимодействующих материалов и технологических параметров формирования адгезионного контакта [5]. В настоящее время накоплен большой экспериментальный материал о природе и механизме протекания межфазных взаимодействий [6, 7], структуре и свойствах граничных слоев [6], влиянии на особенности и характеристики межфазных процессов природы взаимодействующих материалов и внешних тепловых и механических воздействий [5–7]. Теоретические исследования, основной целью которых является аналитическое описание межфазных процессов, менее многочисленны, что объясняется сложностью протекающих процессов, влиянием большого числа факторов, степень и характер воздействия которых на межфазные процессы детально не изучены. В числе работ, посвященных аналитическому описанию контактных процессов, структуры и свойств граничных слоев, следует отметить исследования, развивающие релаксационно-диффузионную теорию межфазных процессов в конденсированных средах [8].

Основой целью настоящей работы является анализ результатов исследований структуры и свойств граничных слоев, закономерностей межфазных процессов, протекающих при вакуумной металлизации полимеров и нанесении полимерных покрытий из газовой фазы, образованной диспергированием исходного полимера в вакууме.

 

 


1. Вакуумная металлизация полимерных материалов


Особенности молекулярного и надмолекулярного строения полимеров, их низкая поверхностная энергия, высокая чувствительность даже к незначительным тепловым воздействиям, химическая активность (особенно при высоких температурах) оказывают влияние на все относительно элементарные процессы осаждения металлического покрытия: аккомодацию, образование адсорбционной фазы, зарождение и рост конденсированной фазы, коалесценцию металлических частиц. Являясь в большинстве случаев аморфными или частично кристаллическими телами, полимеры характеризуются большим набором морфологических форм, сборных структур [9]. Из-за специфического строения макромолекул дефекты в регулярном расположении кинетических единиц в кристаллических полимерах являются неизбежными и локализуются не только по границам кристаллитов. Кроме этого, макромолекулы ряда полимеров обладают дипольными моментами, обусловленными смещением электронной плотности при присоединении полярных групп типа – ОН, – Н, =О, распределение которых на поверхности определяется надмолекулярным строением. В связи с этим процессы адсорбции и конденсации атомов металла на такой неоднородной по составу и строению поверхности имеют ряд особенностей.

Особенности осаждения атомов металла на поверхности полимерных материалов наиболее выражены на начальной стадии осаждения, когда происходит формирование межфазных связей металл – полимер. При постоянной плотности падающего потока атомов, металла коэффициент конденсации К (К=1‑kp) на начальной стадии изменяется со временем сложным образом (рис. 1) [1].









Рис. 1. Кинетика изменения коэффициента реиспарения атомов свинца с поверхности полиэтилена






При определенном, достаточно низком заполнении поверхности значительная часть атомов (для ряда систем металл-полимер до 60%) реиспаряется, после чего коэффициент конденсации К возрастает и стабилизируется. Установлено, что с увеличением плотности потока падающих атомов значения К и время нестационарного реиспарения τ0 уменьшаются как для металлических, так и высокомолекулярных подложек [1,10]. При этом для исследованных режимов осаждения металла на поверхность полимеров выполняется соотношение  (J – плотность потока падающих на подложку атомов металла); т.е. коэффициент конденсации стабилизируется в момент времени, когда на поверхности подложки осаждается одинаковое количество атомов. Электронно-микроскопические исследования состояния конденсированной фазы показали, что этой стадии соответствует образование островковой структуры, характеризуемой достаточно большими расстояниями между зародышами [1], что возможно только при диффузионном характере роста пленки за счет высокой подвижности адатомов металла на поверхности полимера.

Необходимость учета реиспарения и его нестационарность на начальной стадии осаждения создает ряд трудностей при аналитическом описании процесса конденсации. В работах [11, 12] для однородной и изотропной поверхности подложки в приближении постоянства радиуса частиц (R = const), с учетом подвижности только адатомов металла получены аналитические выражения, описывающие изменение во времени концентрации атомов на поверхности и размера изолированного зародыша металлической фазы. Определена также величина зоны захвата, от значения которой линейно зависит коэффициент конденсации [13]. Более общая задача, описывающая диффузионный рост системы зародышей при наличии нестационарного реиспарения адатомов металла, рассмотрена в [14, 15].

При экспериментальном исследовании физико-химических закономерностей энергообмена установлено, что между энергией реиспаренных атомов W и физико-химическими свойствами материала подложки наблюдается корреляция [10, 16]. Полимеры, на поверхности которых энергообмен наиболее интенсифицирован, обладают более низким объемным и поверхностным электросопротивлением, имеют более высокую диэлектрическую проницаемость. Изучена связь W с такими физическими параметрами, поверхности, как работа выхода электрона, поверхностная энергия [16]. На основании результатов исследований предложена методика расчета этих величин с помощью корреляционных уравнений и произведено их. определение для ряда полимеров [16, 17], что является очень важным так как подобные сведения крайне малочисленны. Сравнение результатов измерения параметров массопереноса (К, t0) и энергообмена (W) позволяет произвести относительную оценку энергетического распределения электронных состояний [16].

Установлено, что температурная зависимость коэффициента конденсации атомов металла на поверхности полимеров носит сложный характер (рис. 2) [10].








Рис. 2. Температурная зависи – мость коэффициента конденсации атомов свинца на поверхности ПТФЭ (1), ПЭ (2), ПЭТ (3), ПХТФЭ (4)






В случае металлизации неполярных полимеров при температуре поверхности, соответствующей переходу из стеклообразного состояния в высокоэластическое и из высокоэластического в вязкотекучее, коэффициент конденсации имеет достаточно низкое значение (происходит «срыв» конденсации). На основании данных масс-спектрометрического анализа реиспаренных и десорбированных атомных и молекулярных потоков, а также расчета изменения энтропии вблизи температур релаксационных и фазовых переходов установлено, что существенное влияние на массопереноc оказывает сегментальная подвижность макромолекул [1]. Данный результат полностью согласуется с результатами исследования кинетики осаждения при механическом стекловании неполярных полимеров [1,10].

При вакуумной металлизации полярных полимеров температурная зависимость коэффициента конденсации определяется, в основном, тепловой активацией процессов реиспарения и при Т<Тпл (Тпл – температура плавления полимера) является монотонной. Установленное влияние полярности полимеров на массоперенос при их металлизации объясняется проявлением различной природы центров зародышеобразования металлической фазы [1, 10].

При достаточно высоких температурах поверхности (Т>Тпл), когда реализуется высокая подвижность макромолекул и протекают процессы их термодеструкции, состояние конденсированной фазы в значительно степени определяется массопереносом в объем полимера [18, 19]. При таких режимах металлизации возможно химическое взаимодействие атомов металла с полимером, синтез новых металлоорганических соединений, что представляет существенный практический интерес. Обнаружено также, что при достаточно низкой плотности падающего потока атомов металла из-за их диффузии в объем поверхностная пленка не образуется. При этом атомарное состояние металла для ряда систем является неустойчивым, и в объеме протекают процессы образования кластеров с четко выраженной текстурой. Механизм образования текстуры может быть объяснен особенностями кристаллизации в присутствии адсорбционно-активных сред, ориентирующее действие которых установлено в [20].

Особый интерес представляет изучение особенностей осаждения атомов металла на поверхности структурно-неоднородных полимеров. Показано [21], что у неполярных полимеров области с аморфной структурой в сравнении с областями кристаллической фазы обладают более высокими адсорбционными свойствами. При металлизации полярных полимеров изменение надмолекулярной структуры не оказывает заметное влияния на поверхностное распределение зародышей. Селективный характер зародышеобразования металлической фазы, установленный при осаждении на сферолитные кристаллические образования неполярных полимеров, может быть использован для изучения их тонкой структуры.

В работе [22] показано, что тонкие слои ряда веществ, в том числе и полимеров, способны к передаче структурной информации подложки, на которую они нанесены. Дальнодействующее влияние подложки проявляется при толщинах слоя в несколько мкм. Кинетика осаждения атомов на тонких полимерных слоях также имеет ряд особенностей. Установлено, что материал подложки, на которую нанесен слой полимера, оказывает влияние и на характер температурной зависимости коэффициента конденсации [23]. Так, при осаждении атомов свинца на поверхность полимерного слоя, нанесенного на алюминий, и на поверхность алюминия без слоя характер температурных зависимостей коэффициента конденсации совпадает, хотя при осаждении на поверхность массивного полимера зависимость имеет совершенно иной вид. Определены условия, при которых проявляется указанный эффект передачи адсорбционной активности подложки [1,23].

 

2. Осаждение тонких полимерных покрытий из активной газовой фазы


Основными, относительно элементарными процессами, имеющими место при осаждении полимерных слоев из активной газовой фазы, являются диспергирование исходного полимера концентрированным потоком энергии (ионов, электронов, электромагнитного излучения), перенос летучих продуктов диспергирования в вакууме и их взаимодействие с поверхностью, приводящее к их адсорбции, образованию центров полимеризации и росту высокомолекулярных частиц [4, 23–25].

Физико-химическое состояние активной газовой фазы, а, соответственно, и процессы взаимодействия ее с поверхностью, свойства образующихся покрытий зависят, прежде всего, от условий и режимов диспергирования полимера, приводящего к образованию летучих продуктов. В технологии полимерных покрытий генерация летучих продуктов возможно различными приемами: при пиролизе (термодеструкции) [25], воздействии на поверхность полимера потока ионов [26], электронов [27], электромагнитного излучения [28]. Специфические процессы, протекающие при реализации данных технологических приемов, определяют значительное различие в кинетике диспергирования, составе образующейся газовой фазы и, в конечном счете, в свойствах формируемых покрытий.

Проблемы аналитического описания массо- и теплопереноса, сопровождающих воздействие концентрированных потоков энергии на различные материалы, достаточно подробно рассмотрены в работах [29, 30]. Отметим, что задача расчета кинетики разрушения мишени ставится и при рассмотрении ионного травления при производстве интегральных схем, лазерной и плазменной резки, плавления и других технологических процессов. Вместе с тем полимерные материалы и процессы, протекающие при воздействии на них потоков энергии, имеют ряд особенностей, что определяет необходимость отдельного их изучения. Из-за сложности и многофакторности данных процессов при построении аналитических моделей важным является определение, прежде всего, механизма разрушения макромолекул, температурных полей в поверхностных слоях мишени. В общем случае процесс диспергирования может быть описан системой взаимосвязанных дифференциальных уравнений, определяющих, соответственно, массо-, зарядо-, и теплоперенос [31]. Решение такой системы уравнений возможно только численными методами. Однако задача может быть значительно упрощена в результате анализа конкретных условий диспергирования. Так, например, степень влияния диффузионных процессов, температурной неоднородности на кинетику образования летучих продуктов может быть определена на основании сопоставления характерных параметров процессов: времени диффузионного переноса ; времени возбуждения макромолекул ; времени релаксации температуры ; среднего времени воздействия частиц потока на молекулы полимера ; длительности интервала между последовательными воздействиями на поверхность частиц потока , где Rп - максимальная глубина проникновения заряженных частиц в полимерную мишень; D – коэффициент диффузии; Vp-скорость диспергирования мишени (м/с); - коэффициент температуропроводности; V0 – скорость движения частиц потока; jп – плотность потока частиц; Sв – сечение взаимодействия молекул полимера с частицей падающего на поверхность потока.

Данный подход использовался в работах [32, 33] для описания особенностей электронно-лучевого и лазерного диспергирования ПТФЭ. Экспериментальные исследования показали, что процесс разрушения ПТФЭ электронами с энергией и плотностью jе~100 А/м2 протекает со скоростьюVp~5×10-5 м/с2 [34]. Тогда tд = 0,5…5с (D = 10-15 м2/c), tв ~ 10-3 c, tвз ~ 3×10-6 с, tт~10-10 c, tn ~ 10-3 c. Так как tд >> tв, а tт >> tвз и tт<< tn, то диффузионный массоперенос вносит незначительный вклад в поток летучих частиц и образующийся за время диспергирования в поверхностном слое градиент температур очень мал, т.е. реализуется практически изотермический режим распыления. Оценки максимальной температуры в зоне диспергирования, проведенные на основании уравнения теплового баланса, показали, что процессы термодеструкции не могут вызывать экспериментально наблюдаемую скорость изменения массы образца. В связи с этим сделан вывод о преимущественном вкладе в диспергирование процессов радиационно-стимулированного разрушения макромолекул. Данное заключение согласуется с результатами работы [34], в которой экспериментально установлена линейная зависимость между потерей массы ПТФЭ и величиной адсорбированного электрического заряда.

В соответствии с данными представлениями в работе [32] сформулирована и решена задача аналитического описания диспергирования ПТФЭ электронами, в которой учтена зарядка поверхности, влияющая на энергию взаимодействующих с ней заряженных частиц. Показано, что со временем при отсутствии физико-химических изменений (карбонизации) в поверхностных слоях мишени скорость диспергирования Vp на начальных стадиях уменьшается со временем:


Vp = ajе[U0+(Uy-U0) exp (-t/τэ)],


где а – постоянная величина; τэ – характерное время зарядки полимера; еU0 – энергия электрона, при которой коэффициент вторичной электронной эмиссии равен единице; Uу – ускоряющее напряжение электронной пушки.

Дальнейшее развитие данные представления получили в работе [35]. Для режимов электронно-лучевого диспергирования ПТФЭ, при которых зарядка поверхности отсутствует, предложена модель, описывающая процесс образования летучих продуктов как результат термической деполимеризации, инициируемой радиационным действием электронов. Получено хорошее совпадение расчетных зависимостей с экспериментальными.

Достаточно подробно рассмотрены кинетические закономерности электронно-лучевого диспергирования полимеров [36]. При воздействии на ПТФЭ потов электронов с плотностью jе= 100…350 A/м3 и энергией 300…2000 эВ обнаружено существование начального индукционного периода τп, в течение которого происходит накопление в поверхностном слое продуктов разрушения и выделение летучих продуктов не происходит (рис. 3).

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.