реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Биохимия. Вода

Биохимия. Вода

МИНИСТЕРСТВО КУЛЬТУРЫ, ОБРАЗОВАНИЯ И ЗДРАВООХРАНЕНИЯ

РЕСПУБЛИКИ КАЗАХСТАН

ПАВЛОДАРСКИЙ УНИВЕРСИТЕТ

КАФЕДРА БИОЛОГИИ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА

Предмет: «Биохимия»

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнила ст-ка

гр. ЗБХ-51

КОТ Т.Р.

 

 

 

 

 

 

г. Павлодар, 2004г.

1.      Вода в живых организмах. Строение и свойства воды.

2.      Структурные формулы пуриновых и пиримидиновых оснований, входящих в состав нуклеиновых кислот.

3.      Свойства ферментов, специфичность действий ферментов. Отличия денатурированного белка от нативного.

4.      Витамин D, витамеры этого витамина. Признаки авитаминоза D. Природные источники витамина D.

5.      Схема дихотомического распада D-глюкозы (гликолиз).

6.      Структурная формула пептида-валил-изолейцил-метионил-аргенин.

Все живое на нашей планете на 2/3 состоит из воды. На первом месте в живом веществе по массе стоят микроорганизмы, на втором—растения, на третьем—животные, на последнем — человек. Бактерии на 81 проц. состоят из воды, споры—на 50 проц., ткани животных в среднем на 70 проц., лимфа — 90 проц., в крови содержится около 79 проц. Самая богатая водой ткань — стекловидное тело глаза, которое содержит до 99 проц. влаги, самая бедная — зубная эмаль — всего лишь 0,2 проц.

Вода в организме выполняет несколько функций: растворенные в ней вещества реагируют друг с другом, вода помогает удалению отходов обмена веществ, служит регулятором температуры, являясь хорошим переносчиком тепла, а также смазочным веществом.

У живых организмов вода может синтезироваться в тканях. Так, например, у верблюда жир в горбу, окисляясь, может дать до 40 л воды. Человек, выпивая 2,5 л воды в сутки, ежедневно промывает желудок 10 л жидкостей и испаряет 0,7 л воды.

Изучение химического состава клеток показывает, что в живых организмах нет никаких особых химических элементов, свойственных только им: именно в этом проявляется единство химического состава живой и неживой природы.

Велика роль химических элементов в клетке: N и S входят в состав белков, Р — в ДНК и РНК, Mg — в состав многих ферментов и молекулу хлорофилла, Сu — компонент многих окислительных ферментов, Zn— гормона поджелудочной железы, Fe — молекулы гемоглобина, I — гормона тироксина и т. д. Наиболее важны для клетки анионы НРО42-, Н2РО4-, СО32-, Сl-, НСОз- и катионы Na+, К+, Ca2+

Содержание катионов и анионов в клетке отличается от их концентрации в среде, окружающей клетку, вследствие активной регуляции переноса веществ мембраной. Так обеспечивается постоянство химического состава живой клетки. С гибелью клетки концентрация веществ в среде и в цитоплазме выравнивается. Из неорганических соединений важное значение имеют вода, минеральные соли, кислоты, основания.

Вода в функционирующей клетке занимает до 80% ее объема и находится в ней в двух формах: свободной и связанной. Молекулы связанной воды прочно соединены с белками и образуют вокруг них водные оболочки, изолирующие белки друг от друга. Полярность молекул воды, способность образовывать водородные связи объясняет ее высокую удельную теплоемкость. Вследствие этого в живых системах предотвращаются резкие колебания температуры, происходит распределение и отдача тепла в клетке. Благодаря связанной воде клетка способна выдерживать низкие температуры. Ее содержание в клетке составляет примерно 5%, и 95% приходится на свободную воду. Последняя растворяет многие вещества, вовлекаемые клеткой в обмен.
В высокоактивных клетках, например в ткани головного мозга, на долю воды приходится около 85%, а в мышцах—более 70%; в менее активных клетках, например в жировой ткани, вода составляет около 40% ее массы. В. живых организмах вода не только растворяет многие вещества; с ее участием происходят реакции гидролиза — расщепления органических соединений до промежуточных и конечных веществ.


Вещество

Поступление в клетку

Местонахождение и преобразование

Свойства

Вода

У растений — из окружающей среды; у животных образуется непосредственно в клетке при
углеводов и поступает из окружающей среды

В цитоплазме, вакуолях, матриксе органелл, ядерном соке, клеточной стенке, межклетниках. Вступает в реакции синтеза, гидролиза и окисления

Растворитель. Источник кислорода, осмотический регулятор, среда для физиологических и биохимических процессов,
химический компонент, терморегулор



Стоит отметить, что различные органические вещества при своем окислении образуют различные количества воды. Чем богаче молекула органического вещества водородом, тем больше образуется при его окислении воды. При окислении 100 г жира образуется 107 мл воды, 100 г углеводов - 55 мл воды, 100 г белков - 41 мл воды.

Человек и плотоядные животные не могут обходиться тем количеством воды, которая имеется в твердой пище, и они страдают при отсутствии питьевой воды. Травоядные животные, питающиеся сочными кормами, могут обходиться без питьевой воды. (Нуждаются в питьевой воде сельскохозяйственные животные: коровы, из организма которых большое количество воды выделяется с секретом молочной железы - молоком; лошади, теряющие большое количество воды с потом.) Мелкие грызуны (мыши, крысы), питающиеся сухими продуктами, могут обходиться без питьевой воды. Для них большое значение приобретает эндогенная вода, образующаяся при окислении органических веществ пищи.

Суточная потребность организма человека в воде составляет около 40 г воды на 1 кг веса. У детей грудного возраста потребность в воде на 1 кг веса в три - четыре раза выше, чем у взрослых.

Вода в организмах живых существ не только выполняет транспортную функцию, она также используется в процессах обмена веществ. Включение воды в органические вещества в большом масштабе имеет место у зеленых растений, у которых при использовании солнечной энергии из воды, углекислого газа и минеральных азотистых веществ синтезируются углеводы, белки, липиды и иные органические вещества.

Поступление воды в организм регулируется чувством жажды. Уже при первых признаках сгущения крови в результате рефлекторного возбуждения определенных участков коры головного мозга возникает жажда - стремление к питью. При потреблении даже большого количества воды единовременно, кровь не обогащается водой сразу, не разжижается. Объясняется это тем, что вода из крови быстро поступает в межклеточные пространства и увеличивает количество межклеточной воды. Всосавшаяся в кровь и отчасти в лимфу из кишечника вода в значительной части поступает в кожу и на некоторое время там задерживается. В печени также удерживается некоторое количество поступившей в организм воды.

Вода выделяется из организма, главным образом, почками, с мочой, в небольшом количестве ее выделяют стенки кишечника, затем потовые железы (через кожу) и легкие с выдыхаемым воздухом. Количество воды, выделяемой из организма не постоянно. При сильном потении из организма с потом может выделяться 5 и более литров воды в сутки. В этом случае количество воды, выделяемой почками, уменьшается, моча сгущается. Уменьшается выделение мочи при ограничении питья. Однако сгущение мочи возможно до определенного предела, и при дальнейшем ограничении питья задерживается выведение из организма конечных продуктов азотистого обмена и минеральных веществ, что отрицательно отражается на жизнедеятельности организма. При обильном поступлении воды в организм, выделение мочи увеличивается.

Вода в природе. Вода — весьма распространенное на Земле вещество. Почти 3/4 поверхности земного шара покрыты водой, образующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы.

Вода, содержащая значительное количество солей кальция и магния, называется жесткой в отличие от мягкой воды, на­пример дождевой. Жесткая вода дает мало пены с мылом, а на стенках котлов образует накипь.

Вода имеет очень большое значение в жизни растений, животных и человека. Согласно современным представлениям, само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.

Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью [4,18 Дж/К], Поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулято­ром температуры на земном шаре.

Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, Межъядерные расстояния О—Н близки к 0,1 нм, расстояние ме­жду ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды


две электронные пары образуют ковалентные связи О—Н,  а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии -гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электро­ны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных - орбиталях, смещены относительно ядра атома и создают два отрицательных полюса

Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях, оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.

В твердой воде (лед) атом кислорода каждой молекулы уча­ствует в образовании двух водородных связей с соседними молекулами воды согласно схеме,

                            


в которой водородные связи показаны пунктиром. Схема объемной структуры льда изображена на рисунке. Образование водо­родных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноимен­ными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, раз­меры наименее плотным структурам, в ней существуют пустоты, раз­меры которых несколько превышают размеры молекулы .

По мере нагревания воды, обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды.

Водородные связи между молекулами воды полностью разры­ваются только при переходе воды в пар.

Молекулы воды отличаются большой устойчивостью к нагреванию. Однако при температурах выше 1000 °С водяной пар начинает разлагаться на водород и кислород:

2НО 2Н+О

Вода — весьма реакционноспособное вещество. Оксиды многих металлов и неметаллов соединяются с водой, образуя основания и кислоты; некоторые соли образуют с водой кристаллогидраты; наиболее активные металлы взаимодействуют с водой с выделением водорода.

Вода обладает также каталитической способностью. В отсутствие следов влаги практически не протекают некоторые обычные реакции; например, хлор не взаимодействует с металлами, фтороводород не разъедает стекло, натрий не окисляется в атмосферы воздуха.

Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так: называемые гидраты газов. Примерами могут служить соединения Хе6НО, CI8HO, СН6НО, СН17НО, которые выпадают в виде кристаллов при температурах от 0 до 24 °С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекулами газа (“гостя”) межмолекулярных полостей, имеющихся в структуре воды (“хозяина”); они называются соединениями включения или клатратами.

Пуриновые нуклеозиды:

Пиримидиновые нуклеозиды:

ФЕРМЕНТЫ, органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum – брожение, закваска) иногда называют энзимами (от греч. en – внутри, zyme – закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии – энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л.Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э.Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж.Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.