реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Спектральный анализ и его приложения к обработке сигналов в реальном времени

Спектральный анализ и его приложения к обработке сигналов в реальном времени

Тема: Спектральный анализ и его приложения к обработке сигналов в реальном

времени .

Оглавление

Введение

Постановка проблем, формулировка задач

Глава 1. Теоретический анализ существующих алгоритмов спектрального

анализа.

1.1. Введение в спектральное оценивание

((1.1.1. Задача спектрального оценивания

((1.1.2. Проблемы в области спектрального оценивания.

( 1.1.3. Спектральные оценки по конечным последовательностям данных

( 1.1.4. Общая картина

1.2. Основные определения и теоремы классического спектрального анализа

( 1.2.2 Операции дискретизации и взвешивания для получения дискретно-

временных рядов Фурье.

( 1.2.3. Анализ эргодичных дискретных процессов.

1.3. Классические методы спектрального анализа.

( 1.3.1. Введение.

( 1.3.2. Окна данных и корреляционные окна в спектральном анализе.

( 1.3.3. Периодограммные оценки спектральной плотности мощности.

( 1.3.4. Коррелограммные оценки спектра.

( 1.3.5. Область применения.

4. Авторегрессионное спектральное оценивание.

( 1.4.1. Введение.

( 1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.

( 1.4.3. Методы оценивания коэффициентов отражения.

( 1.4.3.1. Геометрический алгоритм.

( 1.4.3.2. Гармонический алгоритм Берга.

( 1.4.4. Оценивание линейного предсказания по методу наименьших

квадратов.

( 1.4.5. Градиентный адаптивный авторегрессионный метод

( 1.4.6. Рекурсивный авторегрессионный метод наименьших квадратов

1.5. Спектральное оценивание на основе моделей авторегрессии -

скользящего среднего .

1.6. Спектральное оценивание по методу минимума дисперсии.

7. Методы оценивания частоты, основанные на анализе собственных значений.

( 1.7.1. Введение.

( 1.7.2. Процедуры оценки частоты в пространстве сигнала.

( 1.7.3. Оценки частоты в пространстве шума.

Глава 2. Экспериментальный анализ алгоритмов спектрального анализа.

Особенности реализации.

Заключение.

Выводы.

Приложениe А. Смещение периодограммы Уэлча.

Приложениe В. Методы и интерфейсы межзадачного системного и межсистемного

обмена в среде Windows ’95 (Delphi 3.0)

Приложениe С. Достоверность полученных оценок спектральной плотности

мощности.

Приложениe D. Таблица экспериментальных результатов по разрешающей

способности методов спектрального анализа.

Приложениe E. Таблица и графики «Слабые синусоидальные составляющие»

Приложениe F. Дисперсии оценок СПМ как функции частоты.

Приложениe G. Таблица наилучших в смысле структурной устойчивости

параметров адаптивного градиентного метода.

Приложениe Н. Графики оценок СПМ при различных значениях порядка

авторегрессионной модели.

Приложениe I. Список используемой литературы.

Введение

Спектральный анализ - это один из методов обработки сигналов, который

позволяет охарактеризовать частотный состав измеряемого сигнала.

Преобразование Фурье является математической основой, которая связывает

временной или пространственный сигнал (или же некоторую модель этого

сигнала) с его представлением в частотной области. Методы статистики играют

важную роль в спектральном анализе, поскольку сигналы, как правило, имеют

шумовой или случайный характер. Если бы основные статистические

характеристики сигнала были известны точно или же их можно было бы без

ошибки определить на конечном интервале этого сигнала, то спектральный

анализ представлял бы собой отрасль точной науки. Однако в действительности

по одному-единственному отрезку сигнала можно получить только некоторую

оценку его спектра.[1]

К обработке сигналов в реальном масштабе времени относятся задачи

анализа аудио, речевых, мультимедийных сигналов, в которых помимо

трудностей, связанных непосредственно с анализом спектрального содержания и

дальнейшей классификацией последовательности отсчетов (как в задаче

распознавания речи) или изменения формы спектра - фильтрации в частотной

области (в основном относится к мультимедийным сигналам), возникает

проблема управления потоком данных в современных вычислительных системах.

Реальность накладывает отпечаток как на сами вычислительные алгоритмы, так

и на результаты экспериментов, поднимая вопросы, с которыми не сталкиваются

при обработке всей доступной информации.

При обработке сигналов обычно приходится решать задачи двух типов -

задачу обнаружения и задачу оценивания. При обнаружении нужно дать ответ на

вопрос, присутствует ли в данное время на входе некоторый сигнал с априорно

известными параметрами. Оценивание - это задача измерения значений

параметров, описывающих сигнал [1].

Сигнал часто зашумлен, на него могут накладываться мешающие сигналы.

Поэтому для упрощения указанных задач сигнал обычно разлагают по базисным

составляющим пространства сигналов. Для многих приложений наибольший

интерес представляют периодические сигналы. Вполне естественно, что

используются Sin и Cos. Такое разложение можно выполнить с помощью

классического преобразования Фурье.

При обработке сигналов конечной длительности возникают интересные и

взаимозависимые вопросы, которые необходимо учитывать в ходе гармонического

анализа. Конечность интервала наблюдения влияет на обнаружимость тонов в

присутствии сильных шумов, на разрешимость тонов меняющейся частоты и на

точность оценок параметров всех вышеупомянутых сигналов.

Постановка проблемы, формулировка задачи

На настоящее время существует большое количество алгоритмов и групп

алгоритмов, которые так или иначе решают основную задачу спектрального

анализа: оценивание спектральной плотности мощности, с тем чтобы по

полученному результату судить о характере обрабатываемого сигнала .Основной

вклад сделан такими исследователями как: Голд Б. (Gold B.), Рабинер Л.

(Rabiner L.R.), Бартлетт M. (Bartlett M.S.) Однако каждый из алгоритмов

имеет свою область приложения. Например, градиентные адаптивные

авторегрессионные методы не могут быть применены к обработке данных с

быстро меняющимся во времени спектром. Классические методы имеют широкую

область применения, но проигрывают авторегрессионным и методах, основанных

на собственных значениях, по качеству оценивания. Но в реальном масштабе

времени использование последних затруднено из-за вычислительной сложности.

Более того, применение каждого из методов обычно требует выбора

значений параметров (выбор окна данных и корреляционного окна в

классических методах, порядка модели в авторегрессионном алгоритме и

алгоритме линейного предсказания, предполагаемого числа собственных

векторов в пространстве шума в методе Писаренко) и правильный выбор требует

экспериментальных результатов с каждым классом алгоритмов.

Таким образом, имеется следующая задача :

На основе существующих алгоритмов проанализировать возможность их

применения как к последовательной обработке сигналов в реальном времени,

так и к блочной обработке и оценить качество получаемых результатов .

Критериями «качества» оценки спектральной плотности мощности в общем случае

являются смещение этой оценки и ее дисперсия. Однако аналитическое

определение этих величин наталкивается на определенные математические

трудности и в каждом конкретном случае на практике просто визуально

совмещают графики нескольких реализаций спектральной оценки и визуально

определяют смещение и дисперсии к функции частоты. Те области совмещенных

графиков спектральных оценок, где экспериментально определенное значение

дисперсии велико, будет свидетельствовать о том, что спектральные

особенности видимые в спектре одной реализации не могут считаться

статистически значимыми. С другой стороны, особенности совмещенных спектров

в тех областях, где эта дисперсия мала, с большой достоверностью могут быть

соотнесены с действительными составляющими анализируемого сигнала.

Из вышесказанного сформулируем следующие подзадачи:

I. теоретическое и практическое исследование алгоритмов блочной

обработки

II. анализ классических алгоритмов блочной обработки всей

последовательности в части применения окон данных и корреляционных окон

III. анализ алгоритмов обработки сигналов в реальном масштабе времени

Кроме этих теоретических проблем, существует ряд практических

вопросов, специфичных для обработки сигналов в реальном времени. Среди них

выбелим :

( Необходимость в «одновременном» выполнении следующих основных этапов

обработки данных:

1. Непосредственное получение последовательности входных данных

(цифровые отсчеты аудио-сигнала, речевого сигнала).

2. Обработка получаемых отсчетов сигнала.

3. Представление обработанной информации

4. Возможность контролировать процесс обработки информации

( Ограничение длительности интервала выборки поступающих данных

вычислительными ресурсами

( Ограничение длительности интервала выборки характером сигнала

Если первый вопрос очевиден в рамках обработки данных в реальном

времени, то второй и третий вопросы требуют осмысления причин этих

ограничений.

К сформулированным выше задачам добавим :

задачу построения схемы управления обработкой данных в реальном времени,

основанной, в силу первой проблемы, на параллельных вычислениях и

протоколах взаимодействия и синхронизации;

экспериментальный анализ по второй проблеме, то есть исследование влияния

вычислительных ресурсов и методов оцифровки данных на максимально

допустимую длину интервала выборки;

анализ длительности интервала выборки, исходя из характера сигнала.

В качестве основного подхода к решению проблем и исследования применим

методологию математического моделирования и вычислительного эксперимента.

Экспериментальные входные данные будем формировать следующим образом

( для задачи анализа алгоритмов блочной обработки всей

последовательности отсчетов формируем дискретизированные отсчеты данных

тест-сигнала из суммы комплексных синусоид и аддитивных окрашенных шумовых

процессов, сформированные посредством пропускания белого шума через фильтр

с частотной характеристикой типа приподнятого косинуса или окна Хэмминга.

Таким образом, в этом случае эксперимент определяется набором [pic], где

[pic]- последовательность комплексных синусоид с амплитудами [pic] дБ и

частотами [pic]Гц, а [pic] - последовательность шумовых процессов с

параметрами : центральная частота [pic]Гц., динамический диапазон

перекрываемых частот [pic] Гц., мощность шума [pic]дБ.

( для анализа классических алгоритмов блочной обработки всей

последовательности в части применения окон данных и корреляционных окон

эксперимент и подсчет основных характеристик окон будем производить над

дискретизированными отсчетами соответствующих функций.

( для анализа алгоритмов обработки сигналов в реальном масштабе

времени используем аудио и речевой сигналы.

Выходными данными экспериментов будем считать :

( для задачи анализа алгоритмов блочной обработки всей

последовательности отсчетов :

1.) оценку спектральной плотности мощности, полученную с помощью того

или иного метода спектрального анализа, по которой можно судить о качестве

применяемого метода, сравнивая истинную спектральную плотность мощности

сформированного сигнала с полученной оценкой

2.) вычислительные и временные затраты метода

( для анализа окон данных и корреляционных окон - расчетные основные

характеристики такие как : максимальный уровень боковых лепестков,

эквивалентная ширина полосы, ширина полосы по уровню половинной мощности,

степень корреляции и т.д..

( для анализа сигналов в реальном масштабе времени : спектральная

плотность мощности (функция, зависящая в этом эксперименте также и от

времени). Для оценки составляющих в спектре сигнала в данный момент

времени.

Глава 1. Теоретический анализ существующих алгоритмов спектрального

анализа.

1. Введение в спектральное оценивание

1.1.1. Задача спектрального оценивания

Задача спектрального оценивания подразумевает оценивание некоторой

функции частоты. О характеристиках спектральной оценки судят по тому,

насколько хорошо она согласуется с известным спектром тест-сигнала в

некоторой непрерывной области частот.[1]

1.1.2. Проблемы в области спектрального оценивания.

Интерес к альтернативным методам спектрального анализа поддерживается

тем улучшением характеристик, которое они обещают, а именно более высоким

частотным разрешением, повышенной способностью к обнаружению слабых

сигналов или же сохранением «достоверности» формы спектра при меньшем

числе используемых параметров. Аналитически описать характеристики

большинства методов в случае ограниченного времени анализа (то есть в

случае короткой записи данных) весьма затруднительно[1]

Спектральное разрешение относится к числу главных проблем современного

спектрального оценивания, в особенности применительно к анализу коротких

последовательностей данных. При этом то, что понимается под термином

«разрешение», носит весьма субъективный характер. Принято характеризовать

относительные величины разрешающей способности двух спектральных оценок на

основе визуальных впечатлений. [1]

1.1.3. Спектральные оценки по конечным последовательностям данных

Спектральная оценка, получаемая по конечной записи данных,

характеризует некоторое предположение относительно той истинной

спектральной функции, которая была бы получена, если бы в нашем

распоряжении имелась запись данных бесконечной длины. Именно поэтому

поведение и характеристики спектральных оценок должны описываться с помощью

статистических терминов. Общепринятыми статистическими критериями качества

оценки являются ее смещение и дисперсия. Аналитическое определение этих

величин обычно наталкивается на определенные математические трудности,

поэтому на практике просто совмещают графики нескольких реализаций

спектральной оценки и визуально определяют смещение и дисперсию как функции

частоты. Те области совмещенных графиков спектральных оценок, где

экспериментально определенное значение дисперсии велико, будут

свидетельствовать о том, что спектральные особенности, видимые в спектре

отдельной реализации, не могут считаться статистически значимыми. С другой

стороны, особенности совмещенных спектров в тех областях, где эта дисперсия

мала, с большой достоверностью могут быть соотнесены с действительными

частотными составляющими анализируемого сигнала. Однако в случае коротких

записей данных часто не удается получить несколько спектральных оценок,

да и сам статистический анализ отдельных спектральных оценок, полученных по

коротким записям данных, в общем, случае представляет собой весьма трудную

проблему.[1]

1.1.4.Общая картина

Из формального определения спектра, следует, что спектр является

некоторой функцией одних лишь статистик второго порядка, относительно

которых в свою очередь предполагается, что они остаются неизменными, или

стационарными во времени. Следовательно, такой спектр не передает полной

статистической информации об анализируемом случайном процессе, а значит,

дополнительная информация может содержаться в статистиках третьего и более

высокого порядка. Кроме того, многие обычные сигналы, которые приходится

анализировать на практике, не являются стационарными. Однако короткие

сегменты данных, получаемые из более длинной записи данных, можно считать

локально стационарными. Анализируя изменения спектральных оценок от одного

такого сегмента к другому, можно затем составить представление и об

изменяющихся во времени статистиках сигналов, то есть нестационарных.

1.2.Основные определения и теоремы классического спектрального анализа

1.2.1.Непрерывно-временное преобразование Фурье.

Определение: Непрерывно-временным преобразованием Фурье называется функция

[pic]

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.