реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Первичная статистическая обработка информации

Первичная статистическая обработка информации

ГОСУДАРСТВЕННАЯ СЛУЖБА ГРАЖДАНСКОЙ АВИАЦИИ РОССИИ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра Прикладной математики

Курсовая работа

защищена с оценкой

________________________

профессор Монсик В.Б.

_________________________

(подпись руководителя, дата)

Курсовая работа по дисциплине

“Теория вероятностей и математическая статистика”

Вариант №39

Тема: Первичная статистическая обработка информации.

Статистическая проверка гипотез

Выполнил студент группы ПМ 2-2

Митюшин М.С.

______________________________

(дата, подпись)

Москва - 2002

СОДЕРЖАНИЕ

Исходные данные

3

Задание

3

Выполнение первого задания

4

Выполнение второго задания

8

Литература

13

1. Исходные данные: исследуются трудозатраты на выполнение комплекса

доработок на объекте (в человеко-часах).

Результаты независимых измерений трудозатрат на 100 объектах приведены в

таблице 1.

Таблица 1

|Числа |2 |10 |36 |33 |14 |5 |

|попаданий| | | | | | |

|с.в. в | | | | | | |

|разряды | | | | | | |

|[pic] | | | | | | |

Рис.1.

2.5. Статистический ряд распределения строится на базе сгруппированного

ряда. Для этого вычисляются частоты попадания значений x в соответствующие

разряды по формуле:

[pic]

Статистический ряд распределения представлен в таблице 4.

Таблица 4

|Разряды |[280..320|(320..360|(360..400|(400..440|(440..480|(480..520|

|[pic] |] |] |] |] |] |] |

|Частоты |0.02 |0.10 |0.36 |0.33 |0.14 |0.05 |

|[pic] | | | | | | |

2.6. Графической иллюстрацией статистического ряда распределения является

“полигон частот”, представленный на рис.2.

Рис.2.

2.7. Статистический ряд распределения является основой для вычисления и

построения эмпирической плотности вероятности (рис.3). Гистограмма строится

в виде прямоугольников, основания которых равны длинам разрядов, а высоты

определяются из соотношения:

[pic]

где [pic] длина j-го разряда (j=1..m).

Результаты расчетов по оценке эмпирической плотности вероятности [pic]

приведены в таблице 5, а гистограмма на рис.3. (dx = 40)

Таблица 5

|Разряды |[280..32|(320..36|(360..40|(400..44|(440..48|(480..52|

|[pic] |0] |0] |0] |0] |0] |0] |

|Значения |0.050 |0.250 |0.900 |0.825 |0.350 |0.125 |

|[pic] | | | | | | |

Рис.3.

3. Выполнение второго задания.

3.1. Вычислим точечные и интервальные оценки математического ожидания

(выборочного среднего значения) и дисперсии (выборочной исправленной

дисперсии) по данным таблиц 1 и 2. сначала определим точечные оценки.

[pic]

[pic]

[pic]

Интервальную оценку математического ожидания (доверительный интервал) при

заданной доверительной вероятности (надежности) [pic] и числе наблюдений

(объеме выборки) n =100 определим по формуле:

[pic],

где [pic] - точность вычисления МО по результатам наблюдений при заданных

значениях n и [pic]. [pic] , где [pic] определяется по таблицам Стьюдента:

[pic]=[pic]=1,984

[pic]

Интервальная оценка (доверительный интервал) для МО равна:

[pic]

Этим отрезком с вероятностью 0,95 накрывается истинное (неизвестное)

значение МО.

Интервальная оценка среднего квадратического отклонения (доверительный

интервал) определяется по формуле:

[pic],

где q определяется по таблице [pic]

q = q(100;0,95)=0,143

Доверительный интервал для оценки с.к.о. равен

42,493(1-0,143)< [pic] : |0,02 |0,597 |0,853 |0,025 |0,2547 |0,1482 |

|7 |[pic] |[pic] |

Проверяем гипотезу [pic] о нормальном распределении генеральной

совокупности значений Х:

1). По таблице [pic]- распределения по заданному уровню значимости

[pic]=0,10 и числу степеней свободы k=m-2-1=3 (m=6 – число разрядов, 2 –

число параметров нормального распределения [pic]) определим критическое

значение [pic], удовлетворяющее условию:

[pic].

В нашем случае [pic]

2). Сравнивая выборочную статистику [pic], вычисленную по результатам

наблюдений, с критическим значением [pic], получаем:

[pic], [pic]

[pic]<[pic][pic][pic]- согласуется с данными опыта (принимается).

Вывод: статистическая проверка по критерию [pic]- Пирсона нулевой гипотезы

о нормальном распределении значений х генеральной совокупности, выдвинутой

на основании выборочных данных, не противоречит опытным данным.

2). Критерий [pic]- Колмогорова.

Выборочная статистика [pic]- Колмогорова рассчитывается по формуле:

[pic]

где [pic]

модуль максимальной разности между эмпирической [pic] и сглаживающей

функциями распределения.

При заданном уровне значимости [pic]=0,10 критическое значение

распределения Колмогорова [pic] Полученной на основании выражения:

[pic]

функции распределения статистики [pic]- Колмогорова.

Для проверки нулевой гипотезы проведем следующую процедуру:

1). Найдем максимальное значение модуля разности между эмпирической [pic] и

сглаживающей F(x) функциями распределения:

[pic]=0,063.

2). Вычислим значение выборочной статистики [pic] по формуле:

[pic]=0,063[pic]=0,63.

3). Сравнивая выборочную статистику [pic] и критическое значение [pic]

получаем:

[pic]=0,63<1,224=[pic].

Следовательно, гипотеза [pic] о нормальном распределении случайной величины

Х согласуется с опытными данными.

3.5. Вероятность попадания значений случайной величины Х на интервал [МО -

с.к.о.; МО + 2*с.к.о.] вычислим по формуле:

P=(X[pic][404,180-42,493;404,180+2*42,493])=P(X[pic][361,7;489,17])=

=[pic]=Ф(2)+ Ф (1)=

=0,477+0,341=0,818.

ЛИТЕРАТУРА

Монсик В.Б. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА: Пособие к

выполнению курсовой работы. – М.: МГТУ ГА, 2002. – 24 с..

-----------------------

[pic]



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.