реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Основные понятия дифференциального исчисления и история их развития (Бакалавр)

Основные понятия дифференциального исчисления и история их развития (Бакалавр)

Министерство общего и профессионального образования

Астраханский Государственный Педагогический Университет

Бакалаврская работа

Студентки IV курса физико–математического факультета

Ночевной Светланы Павловны

Кафедра:

Математического анализа

Тема:

Основные понятия дифференциального исчисления и история их развития

Научный руководитель

ст. преподаватель

Пономарёва Н.Г.

Астрахань

1998 г.

План.

1. Основные понятия дифференциального исчисления функций одной переменной.

1. Определение производной и её геометрический смысл.

2. Дифференциальные функции. Определение дифференциала.

3. Инвариантность формы первого дифференциала.

4. Дифференциал суммы, произведения и частного.

5. Геометрическая интерпретация дифференциала.

2. Основные понятия интегрального исчисления функций одной переменной.

1. Первообразная функция и неопределённый интеграл.

2. Геометрический смысл неопределённого интеграла.

3. Основные свойства неопределённого интеграла.

4. Метод непосредственного интегрирования.

5. Метод замены переменной (способ подстановки).

6. Интегрирование по частям.

7. Определённый интеграл как предел интегральной суммы.

8. Основные свойства определённого интеграла.

9. Геометрический смысл определённого интеграла.

10. Теорема Ньютона–Лейбница.

11. Формула Ньютона–Лейбница.

12. Замены переменных в определённых интегралах.

13. Интегрирование по частям.

3. Исторические сведения о возникновении и развитии основных понятий.

1. Происхождение понятия определённого интеграла и инфинитезимальные

методы Архимеда.

2. От Архимеда к Кеплеру и Кавальери.

3. Теорема Паскаля.

4. «О глубокой геометрии» Лейбница.

5. «Метод флюксий» Ньютона.

6. Дифференциальные методы.

Цель работы: «Изучить основные понятия дифференциального

и интегрального исчислений и ознакомиться с историей их

развития».

Основные понятия дифференциального исчисления функций одной переменной.

1 Определение производной и её геометрический смысл.

Пусть функция y = f(х) определена в окрестности точки хо. возьмём

точку х1 этой окрестности, отличную от хо.

Определение. Разность х1 – х0, которую обозначают символом (х, будем

называть приращением независимой переменной.

Определение. Подобным образом соответствующая разность

у1 – у0 = f(х1) – f(х0), обозначается символом (у и

называется приращением зависимой переменной, или

приращением функции.

Получаются следующие соотношения:

х1 = х0 + (х,

у1 = у0 + (у,

у0 + (у = f(х0 + (х)

Так как у0 = f(х0),

то (у = f(х0 + (х) – f(х0).

Определение. Частное будем называть

разностным отношением.

Выражение f(х0+(х)– f(х0)

(принимая что х0 имеет определённое постоянное значение) можно считать

функцией приращения (х.

Определение. Если предел этого выражения при (х, стремящемся к нулю,

существует, то его мы будем называть производной

функции у = f(х) по х в точке х0

Итак, = = f’(х0) = у’х = у’=

Пример. у=х2 . Вычислите производную для х=2.

Имеем: f(х+(х) = (х+(х)2 ,

Поэтому (у = (х+(х)2 – х2 = 2х(х+((х)2

Отсюда = 2х+(х

Переходя к пределу получим: = 2х + = 2х.

Для того, чтобы отношение имело предел, необходимо, чтобы , то

есть, чтобы функция рис.1

была непрерывной в точке х0.

Рассмотрим график функции у = f(х) (рис.1)

Легко заметить, что отношение равно тангенсу угла (,

образованного положительным направлением секущей, проходящей через точки А

и В (соответствующие точкам х и х+(х), с положительным направлением оси Ох,

то есть, от А к В если теперь приращение (х будет стремиться к нулю, точка

В будет стремиться к А, то угол ( будет стремиться к (, образованному

положительным направлением касательной с положительным направлением оси Ох,

а tg ( будет стремиться к tg (.

Поэтому = tg ( (положительным направлением касательной

считаем то направление, в котором х возрастает).

Таким образом, можно утверждать следующее:

Производная в данной точке х равна тангенсу угла, образованного

положительным направлением касательной в соответствующей точке (х,f(х))

нашей кривой с положительным направлением оси Ох.

1.2 Дифференциальные функции. Определение дифференциала.

Определение. Функция у = f(х) называется дифференцированной в точке х,

если её приращение (у в этой точке можно представить в

виде

(у = f’(х)(х+(((х)(х,

где ( ((х) = 0

Как видно из из определения, необходимым условием дифференцируемости

является существование производной. Оказывается что это условие также и

достаточно. В самом деле пусть существуют у’ = f’(х)

Положим – f’(х), (х ( 0

0. , (х = 0

При таком определении ( имеет для всех (х

(у = f’(х)(х +(((х)(х .

Остаётся, следовательно, установить непрерывность (((х) при (х = 0, то

есть, равенство ( ((х) = ((0) = 0, но, очевидно,

( ((х) = – f’(х) = f’(х) – f’(х) = 0,

что и требовалось.

Таким образом, для функции одной переменной дифференцируемость и

существование производной — понятия равносильные.

Определение. Если функция у = f’(х) дифференцируема, то есть, если (у

= f’(х)(х + ( . (х, ( = 0,

то главную линейную часть f’(х)(х, её приращения будем обозначать

dху, dхf(х) и называть дифференциалом переменной у по

переменной х в точке х.

Написав для симметрии dхх вместо (х, получим следующую формулу:

dху = f’(х)dхх,

откуда = f’(х).

Заметим ещё, что дифференциалы dху и dхх являются функциями переменной

х, причём функция dхх принимает постоянное значение (х.

1.3 Инвариантность формы первого дифференциала.

В случае, когда переменная у = f(х) была функцией независимой

переменной х, мы имеем, по определению,

(у = f’(х)(х или dхх = f’(х)dхх (1)

Рассмотрим теперь случай, когда х является в свою очередь функцией

другой переменной,

х = х(t).

Теорема. Если функции х = ((t) и у = ((t) дифференцируемы в

соответствующих точках t = t1 и х = х1 = ((t1), то

дифференциал сложной функции у = f(((t)) = ((t) может

быть представлен в виде

dtу = f’(х1) dtх.

Доказательство: Согласно определению дифференциала имеем

dtх = (’(t1) dtt (11)

dtу = (’(t1) dtt (2)

Но на основании теоремы о производной сложной функции мы видим, что

(’(t1) = f’(х1) (’(t1)

Подставив это выражение в формулу (2), получим:

dtу = f’(х1) (’(t1) dtt,

отсюда в силу формулы (11)

dtу = f’(х1) dtх (3)

Сравнив формулу (1) с формулой (3), мы заметим что их можно записать

символически в виде

dу = f’(х) dх (4)

Формулу (1) или (3) мы получаем из формулы (4), написав вместо d,

соответственно dх или dt.

Символы dх и dу не являются совершенными, однако во многих случаях,

когда возможность ошибиться будет исключена, мы будем ими пользоваться

вместо символов dхх и dху или, соответственно, dtх и dtу.

Значение формулы (4) становится ясным, если обратить внимание на то,

что при отыскании производной приходится пользоваться двумя формулами для

определения производной у по х. А именно, когда переменная у зависит

непосредственно от х, то

у’х = f’(х);

когда же зависимость переменной у от х даётся при помощи некоторой

(промежуточной) функции и, то

у’х = f’(и)и’х.

При отыскании же дифференциалов получим в обоих случаях одинаковые

формулы:

dху = f’(х) dхх, dху = f’(и) dхи

или

dу = f’(х) dх, dу = f’(и) dи.

1.4 Дифференциал суммы, произведения и частного.

Из теорем о производных суммы, произведения и частного можно получить

аналогичные формулы для дифференциалов суммы, произведения и частного.

Пусть и и ( — функции от х:

и = f(х), ( = ((х),

имеющие непрерывные частные производные.

Если положить у = и + (,

то у’х = и’х + (’х,

откуда у’х dх = и’х dх + (’хdх,

следовательно dу = dи + d(,

то есть d(и + () = dи + d(.

Аналогично dси = сdи,

где с – постоянное число;

d(и() = иd( + (dи,

d ( ) = .

Замечание. На практике часто бывает выгоднее оперировать

дифференциалами, а потом делением на дифференциал

независимой переменной переходить к производной.

1.5 Геометрическая интерпретация дифференциала.

Дифференциал можно геометрически представить следующим образом:

Из рис. 2 видно, что dу = f’(х)dх = tg ( . dх = СД.

Таким образом, если (у – приращение ординаты кривой, то dу –

приращение ординаты касательной.

Дифференциал dу, вообще говоря, отличается от (у, но их разность очень

мала по сравнению dх для очень малых dх, так как

= ( ((х) = 0

На практике, когда речь идёт только о приближённых значениях, можно

для малых приращений dх считать

(у = dу = f’(х)dх.

Основные понятия интегрального исчисления функций одной переменной.

1 Первообразная функция и неопределённый интеграл.

Основной задачей дифференциального исчисления является нахождение

производной f’(х) или дифференциала f’(х)dх данной функции f(х).

В интегральном исчислении решается обратная задача:

Дана функция f(х); требуется найти такую функцию F(х), производная

которой f(х)dх в области определения функции f(х), то есть, в этой области

функции f(х) и F(х) связаны соотношением F’(х) = f(х) или dF(х)= F’(х)dх =

f(х)dх.

Определение. Функция F(х) называется первообразной функцией для

данной функции f(х), если для любого х из области

определения f(х) выполняется равенство F’(х) = f(х)

или dF(х) = f(х)dх.

Примеры. 1) Пусть f(х) = cos х.

Решение: Тогда F(х) = sin х, так как F’(х) = cos х =

f(х) или dF(х) = cos х dх = f(х)dх

2) Пусть f(х) = х2.

Решение: Тогда F(х) = , так как F’(х) = х2 = f(х) или dF(х) =

х2dх = f(х)dх.

Известно, что если две функции f(х) и ((х) отличаются друг от друга

на постоянную величину, то производные или дифференциалы этих функций

равны, то есть, если f(х) = ((х) + С, то f’(х) = (’(х) или

f’(х)dх = (’(х)dх.

Известно также, что и наоборот, если две функции f(х) и ((х) имеют

одну и ту же производную или один и тот же дифференциал, то они отличаются

друг от друга на постоянную величину, то есть, если

f’(х) = (’(х) или dхf(х) = d((х), то

f(х) = ((х) + С.

Замечание. Действительно, если производная f’(х) обращается в нуль

для любых значений х в (а,в), то в этом интервале f(х)

= С.

В самом деле, если х1( (а,в) и х2 ( (а,в), то в силу теоремы Лагранжа,

имеем f(х2) – f(х1) = (х2–х1) f’(х0), где х1( х0( х2 . Но, так как f’(х0) =

0, то f(х2) – f(х1) = 0.

Отсюда непосредственно следует что, если в формуле у = F(х) + С мы

будем придавать постоянной С все возможные значения, то получим все

возможные первообразные функции для функции f(х).

Определение. Множество F(х) +С всех первообразных функций для

функции f(х), где С принимают все возможные числовые значения, называется

неопределённым интегралом от функции f(х) и обозначается символом

f(х)dх

Таким образом, по определению,

f(х)dх = F(х) + С, (А)

где F’(х) = f(х) или dF(х) = f(х)dх и С – произвольная постоянная. В

формуле (А) f(х) называется подынтегральной функцией, f(х)dх –

подынтегральным выражением, а символ – знаком неопределённого интеграла.

Неопределённым интегралом называют не только множество всех

первообразных, но и любую функцию этого множества.

Определение. Нахождение первообразной по данной функции f(х)

называется интегрированием

2 Геометрический смысл неопределённого интеграла.

Пусть задан неопределённый интеграл F(х) + С для функции f(х) в

некотором интервале. При фиксированном значении С = С1 получим конкретную

функцию у1 = F(х) + С1, для которой можно построить график; его называют

интегральной кривой. Изменив значение С и положив С = С2, получим другую

первообразную функцию С соответствующей новой интегральной кривой.

Аналогично можно построить график любой первообразной функции.

Следовательно, выражение у = F(х) + С можно рассматривать как уравнение

семейства интегральных кривых неопределённого интеграла F(х) + С. Величина

С является параметром этого семейства – каждому конкретному значению С

соответствует единственная интегральная кривая в семействе. Интегральную

кривую, соответствующую значению параметра С2, можно получить из

интегральной кривой, соответствующей значению параметра С1, параллельным

сдвигом в направлении оси Оу на величину /С2 – С1/. На рис. 3 изображён

неопределённый интеграл х2 + С от функции f(х) = 2х, то есть, семейства

парабол.

3 Основные свойства неопределённого интеграла.

1) Производная неопределённого интеграла равна подынтегральной

функции, то есть,

[ f(х)dх ]’ = f(х) .

Доказательство. Согласно определению неопределённого интеграла,

f(х)dх = F(х) + С, (V)

где F’(х) = f(х)

Дифференцируя обучение части равенства (V), имеем

[ f(х)dх ]’ = [F(х) + С ]’,

откуда

[ f(х)dх ]’ = F’(х) + С1 = F’(х) = f(х) .

2) Дифференциал неопределённого интеграла равен подынтегральному

выражению, то есть

d f(х)dх = f(х)dх

Доказательство. Согласно определению неопределённого интеграла,

f(х)dх = F(х) + С

d f(х)dх = d(F(х) + С) = dF(х) = dС = F’(х)dх =

f(х)dх

3) Неопределённый интеграл от дифференциала некоторой функции F(х)

равен самой функции с точностью до произвольной постоянной С, то

есть

dF(х) = F(х) + С, (v)

Доказательство. Продифференцировав оба равенства (v), будем иметь

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.