реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Математическое моделирование

Математическое моделирование

МОСКОВСКИЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

кафедра инновационного проектирования

В . М . КЛЕМПЕРТ

Методические указания

по выполнению курсовой работы в

курсе "Математическое моделирование"

Москва

1998

СОДЕРЖАНИЕ

1. Тематика курсовой работы

3

2. Задание на выполнение курсовой работы

17

3. Состав, объем и содержание курсовой работы

18

4. Оформление курсовой работы

18

5. Защита курсовой работы

19

1. ТЕМАТИКА КУРСОВОЙ РАБОТЫ

ВВЕДЕНИЕ

Различают четыре типа зависимостей между переменными:

1)Зависимость между неслучайными переменными, не требующую для

своего изучения применения статистических методов;

2) 1)Зависимость случайной переменной y от неслучайных переменных,

исследуемую методами регрессионного анализа;

3) 1)Зависимость между случайными переменными y и xi, изучаемую

методами корреляционного анализа;

4) 1)Зависимость между неслучайными переменными, когда все они

содержат ошибки измерения, требующую для своего изучения применения

конфлюэнтного анализа.

Применение регрессионного анализа для обработки результатов

наблюдений позволяет получить оценку влияния переменных, рассматриваемых в

качестве аргументов (независимых переменных) на переменную, которая

считается зависимой от первых.

Курсовая работа направлена на освоение методов регрессионного

анализа в процессе разработки математического описания исследуемого

процесса или явления. Курсовая работа предусматривает обработку

экспериментальных данных и поиск наиболее удовлетворительной гипотезы

взаимосвязи между функцией и аргументами.

В качестве таких гипотез рассматриваются линейная и нелинейная

регрессионные модели, каждая из которых может быть парной (только две

переменных - функция и аргумент) или множественной (одна функция и

несколько аргументов).

Относительно закона изменения независимых переменных x i не делается

никаких ограничений -

ЛИНЕЙНАЯ ПАРНАЯ РЕГРЕССИЯ

Для нахождения теоретической линии регрессии по данным

производственных замеров или специально поставленных экспериментов

применяется метод наименьших квадратов, с помощью которого путем

определенных вычислений находится уравнение y = f(x), соответствующее

взаимосвязи рассматриваемых параметров. А именно, отыскивается

теоретическая линия регрессии у по х, занимающая в корреляционном поле

такое положение, при котором выполняется требование, чтобы сумма квадратов

расстояний от этой линии до каждой точки в корреляционном поле являлась

минимальной.

При изображении корреляционного поля на графике по оси у

откладывают значения функции, а по оси х — значения аргумента .

Теоретическая линия регрессии у по х должна быть внесена в корреляционное

поле таким образом, чтобы соблюдался принцип наименьших квадратов:

m

S2 = ( (yj2 = ( ( yj ( y' j)2

( 1 )

j = 1

где j— порядковый номер точки в исходном числовом материале:

у j—измеренное значение функции для определенного значения аргумента

(х);

y'/--расчетное значение функции при заданной величине аргумента (х) в

соответствии с теоретической их взаимосвязью. В случае линейной

зависимости

y'j = a + b x j.

(2)

Задача сводится к отысканию коэффициентов регрессии а и b уравнения

(2), т. е. заранее установлено, что рассматриваемые параметры у и х связаны

линейной зависимостью по уравнению (2).

Величина (yj представляющая собой расстояние от каждой точки

корреляционного поля до теоретической линии регрессии, определяется из

уравнения

(yj = yj ( ( a + b x j )

(3)

где x j— параметр х, соответствующий измеренному значению у j.

Для определения численных значений коэффициентов регрессии a и b,

исходя из принципа наименьших квадратов отклонений, нужно приравнять нулю

частные производные функции S 2 по a и b:

(S 2/ ( a = ( ( ( (yj ) 2 / ( a = 0,

( 4 )

(S 2/ ( b = ( ( ( (yj ) 2 / ( b = 0

( 5 )

Выполнив необходимые преобразования, получим систему двух уравнений с

двумя неизвестными для определения a и b:

( y = m a + b ( x

( yx = a ( x + b (x 2

. ( 6 )

Решая систему уравнений относительно a и b, находим численные

знаяения коэффициентов регрессии. Величины (y, (x, (yx, (x2 находятся

непосредственно по данным производственных измерений, которые заданы в

курсовой работе.

Величина свободного члена уравнения регрессии (2), или коэффициента а

равна функции у при x = 0.

Коэффициент b в уравнении регрессии характеризует изменение функции у

при изменении аргумента х на единицу. и графически отражает угол наклона

линии уравнения регрессии

При решении практических задач регрессионного анализа возникает вопрос

об оценке тесноты исследуемой взаимосвязи, т. е. насколько полученные на

основе обработки производственных или лабораторных данных уравнения

регрессии достоверны. В случае парной линейной корреляции в качестве оценки

тесноты связи используют обычно коэффициент корреляции, который

рассчитывается по формуле:

r = ( XY ( X * Y ) / ( ( x *

( y ). ( 7 )

Числитель выражения для коэффициента корреляции r представляет собой

разность между средним значением произведения XY и произведением

средних значений X * Y измеренных значений параметров x и y исходной

информации. Знаменатель равен произведению средних квадратических

отклонений значений параметров у и х от своих средних. Средние

квадратические отклонения (стандартные отклонения) рассчитываются по

формулам:

( x = { [ ( ( x j ( X ) 2 ] / m }1/2

( 8 )

( y = { [ ( ( y j ( Y ) 2 ] / m }1/2 .

( 9 )

Квадраты средних квадратических отклонений y и х (( x 2 и ( y 2 )

называются дисперсиями

D x = [ ( ( x j ( X ) 2 ] / m

( 10 )

Dy = [ ( ( y j ( Y ) 2 ] / m

( 11 )

и являются важными статистическими оценками рассеяния значений какой-либо

величины около ее среднего значения.

Величина коэффициента корреляции r может изменяться от 0 при полном

отсутствии связи до ±1 при наличии линейной функциональной связи х с у.

Если r > 0, между х и у имеет место положительная корреляционная связь, т.

е. с ростом параметра х увеличивается параметр у, если r < 0, между х и

у имеет место отрицательная связь. С коэффициентом регрессии b в

уравнении (2) коэффициент корреляции связан соотношением

r = b ( x

/ ( y . ( 12 )

Угловой коэффициент регрессии b представляет собой тангенс угла

наклона линии регрессии к оси абсцисс . Следовательно, чем больше наклон

линии регрессии к оси абсцисс, тем больше значение коэффициента корреляции,

т. е. тем значительнее будет изменение функции у при изменении на единицу

аргумента х.

Малая величина коэффициента корреляции указывает на отсутствие

линейной связи, однако криволинейная связь между рассматриваемыми

параметрами при этом может быть достаточно тесной. Коэффициент корреляции

отражает не только величину приращения у при изменении х, но и тесноту

связи функции и аргумента. Чем больше разброс точек относительно линии

регрессии, тем меньше коэффициент корреляции. Это свойство коэффициента

корреляции отражено в его формуле в виде соотношения стандартных

отклонений.

Для оценки надежности полученного результата используют иногда

критерий надежности (, который учитывает как величину коэффициента

корреляции, так и число пар измерений. Критерий надежности (

рассчитывается по формуле

( = r * [m ( 1] 1/2 / (1 ( r 2

), ( 13)

где r— коэффициент корреляции;

т—число пар измерений.

Как видно из формулы критерия надежности, чем выше коэффициент

корреляции и большее число пар измерений, тем больше показатель надежности.

При (, > 2,6 связь считается статистически достоверной.

Располагая данными можно выполнить анализ взаимосвязи аргумента и

функции : построить график с корреляционным полем рассматриваемых

показателей, определить теоретическую линию регрессии, оценить тесноту

связи для выбранных параметров. Однако, проанализировав конфигурацию

корреляционного поля, построенного по исходным данным, можно усмотреть

что описание взаимосвязи рассматриваемых параметров с помощью прямой линии

не является наилучшей аппроксимацией. Иногда в данное поле корреляции

значительно лучше впишется некоторая кривая.

Таким образом из технологического опыта может следовать, что связь

между аргументом и функцией имеет криволинейный характер. Возможно, что

аппроксимация производственных данных в виде кривой точнее отражала бы

существующую взаимосвязь.

КРИВОЛИНЕЙНАЯ ПАРНАЯ РЕГРЕССИЯ

Аппроксимация кривой выполняется тем же путем с использованием метода

наименьших квадратов, что и выравнивание по прямой линии . Линия регрессии

должна удовлетворять условию минимума суммы квадратов расстояний до каждой

точки корреляционного поля. В данном случае в уравнении (1) у представляет

собой расчетное значение функции, определенное при помощи уравнения

выбранной криволинейной связи по фактическим значениям х j. Например, если

для аппроксимации связи выбрана парабола второго порядка, то

y = а + b x + cx2,

( 14 )

.а разность между точкой, лежащей на кривой, и данной точкой

корреляционного поля при соответствующем аргументе можно записать

аналогично уравнению (3) в виде

(yj = yj ( ( a + bx + cx2)

( 15 )

При этом сумма квадратов расстояний от каждой точки корреляционного

поля до новой линии регрессии в случае параболы второго порядка будет иметь

вид:

S 2 = ( (yj 2 = ( [yj ( ( a + bx + cx2)] 2

( 16 )

Исходя из условия минимума этой суммы, частные производные S 2 по а,

b и с приравниваются к нулю. Выполнив необходимые преобразования, получим

систему трех уравнений с тремя неизвестными для определения a, b и с.

, ( y = m a + b ( x + c ( x 2

( yx = a ( x + b ( x 2 + c ( x 2.

( yx2 = a ( x 2 + b( x 3 + c ( x4 .

( 17 ).

Решая систему уравнений относительно a, b и с, находим численные

значения коэффициентов регрессии. Величины (y, (x, (x2, (yx, (yx2, (x3,

(x4.находятся непосредственно по данным производственных измерений.

Оценкой тесноты связи при криволинейной зависимости служит

теоретическое корреляционное отношение ( xу , представляющее собой корень

квадратный из соотношения двух дисперсий: среднего квадрата (р2 отклонений

расчетных значений y' j функции по найденному уравнению регрессии от

среднеарифметического значения Y величины y к среднему квадрату

отклонений (y2 фактических значений функции y j от ее

среднеарифметического значения :

( xу = { (р2 / ( y2 } 1/2 = { ( (y' j - Y)2 / ( (y j - Y)2 } 1/2

( 18 )

Квадрат корреляционного отношения (xу2 показывает долю полной

изменчивости зависимой переменной у, обусловленную изменчивостью аргумента

х. Этот показатель называется коэффициентом детерминации. В отлично от

коэффициента корреляции величина корреляционного отношения может принимать

только положительные значения от 0 до 1. При полном отсутствии связи

корреляционное отношение равно нулю, при наличии функциональной связи оно

равно единице, а при наличии регрессионной связи различной тесноты

корреляционное отношение принимает значения между нулем и единицей. Выбор

типа кривой имеет большое значение в регрессионном анализе, поскольку от

вида выбранной взаимосвязи зависит точность аппроксимации и статистические

оценки тесноты связи. Наиболее простой метод выбора типа кривой состоит в

построении корреляционных полей и в подборе соответствующих типов

регрессионных уравнений по расположению точек на этих полях. Методы

регрессионного анализа позволяют отыскивать численные значения

коэффициентов регрессии для сложных видов взаимосвязи параметров,

описываемых, например, полиномами высоких степеней. Часто вид кривой может

быть определен на основе физической сущности рассматриваемого процесса или

явления. Полиномы высоких степеней имеет смысл применять для описания

быстро меняющихся процессов в том случае, если пределы колебания параметров

этих процессов значительные.

Применительно к исследованиям металлургического процесса достаточно

использовать кривые низших порядков, например параболу второго порядка.

Эта кривая может иметь один экстремум, что, как показала практика,

вполне достаточно для описания различных характеристик металлургического

процесса.

Результаты расчетов параметров парной корреляционной взаимосвязи были

бы достоверны н представляли бы практическую ценность в том случае, если бы

используемая информация была получена для условий широких пределов

колебаний аргумента при постоянстве всех прочих параметров процесса.

Следовательно, методы исследования парной корреляционной взаимосвязи

параметров могут быть использованы для решения практических задач лишь

тогда, когда существует уверенность в отсутствии других серьезных влияний

на функцию, кроме анализируемого аргумента. В производственных условиях

вести процесс таким образом продолжительное время невозможно. Однако если

иметь информацию об основных параметрах процесса, влияющих на его

результаты, то математическим путем можно исключить влияние этих параметров

и выделить в «чистом виде» взаимосвязь интересующей нас функции и

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.