реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Техническая эксплуатация и ремонт двигателей постоянного тока

Техническая эксплуатация и ремонт двигателей постоянного тока

Содержание


Введение

1.           Принцип действия и область применения

1.1      Общие сведения

1.2      Реакция якоря машины постоянного тока

1.3      Момент двигателя постоянного тока

1.4      Регулирование частоты

2.           Допустимые режимы работы двигателей постоянного тока

2.1      Допустимые режимы при изменении напряжения

2.2      Допустимые режимы при изменении температуры входящего воздуха

2.3      Допустимые температуры подшипников

3.           Обслуживание двигателей постоянного тока, надзор и уход за ними

3.1      Надзор за нагрузкой и подшипниками двигателей

3.2      Надзор и уход за охлаждением двигателя

4.           Ремонт двигателя постоянного тока

4.1      Организация ремонта

4.2      Текущий ремонт двигателя

4.3      Капитальный ремонт двигателей

5.           Межотраслевые правила по технике безопасности

6.           Правила безопасности при эксплуатации электроустановок

Заключение

Список литературы


Введение


Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне. Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.

Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением. Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов. Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую.

Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса. Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.


1.                Принцип действия и область применения

1.1           Общие сведения


Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

В разных по мощности двигателях применяется различная обмотка возбуждения:

1)                Простая волновая обмотка применяется для машин малой и средней мощности (до 500 кВт) при напряжении 110 В и выше.

2)                Простая петлевая обмотка применяется для двухполюсных машин малой мощности (до 1 кВт) и машин свыше 500 кВт.

При вращении обмотки якоря в неподвижном магнитном поле, в ней индуктируется переменная ЭДС, изменяющаяся с частотой:


,

(1)


При вращении якоря между любыми двумя точками обмотки якоря действует переменная ЭДС. Однако между неподвижными контактными щетками действует постоянная по величине и направлению ЭДС E, равная сумме мгновенных значений ЭДС e1, e2, e3 и т.д. (рисунок 1), индуктированных во всех последовательно соединенных витках якоря, расположенных между этими щетками. [5]


Рисунок 1.1 - векторная диаграмма, индуктируемых в якорной обмотке ЭДС (e1, e2, e3 - мгновенные значения ЭДС, AB – сумма мгновенных значений ЭДС)


Зависимость ЭДС Е от магнитного потока машины и скорости вращения якоря имеет вид:


;

.

(2)


(3)


При подключении обмотки якоря к сети с напряжением U, ЭДС Е будет приблизительно равна напряжению U, и скорость вращения ротора:


.

(4)


Следовательно, благодаря наличию коллектора при работе машины постоянного тока в двигательном режиме скорость вращения ротора не связана жестко с частотой сети, как в асинхронных и синхронных машинах, а может изменяться в широких пределах путем изменения напряжения U и магнитного потока Ф. Ось симметрии, разделяющая полюса машины постоянного тока, называется ее геометрической нейтралью.

При разомкнутой внешней цепи ток в обмотке якоря не будет протекать, т. к. ЭДС, индуктированные в двух частях обмотки якоря, расположенных по обе стороны геометрической нейтрали, направлены встречно и взаимно компенсируются. Для того чтобы подать от обмотки якоря во внешнюю цепь максимальное напряжение, эту цепь нужно присоединить к двум точкам обмотки якоря, между которыми действует наибольшая разность потенциалов, где и следует устанавливать щетки. При вращении якоря точки смещаются с геометрической нейтрали, но к щеткам будут подходить все новые и новые точки обмотки, между которыми действует ЭДС Е, поэтому ЭДС во внешней цепи будет неизменна по величине и направлению. Для уменьшения пульсаций ЭДС при переходе щеток с одной коллекторной пластины на другую в каждую параллельную ветвь обмотки якоря обычно включается не менее 16 активных проводников.

На якорь, по обмотке которого протекает ток I, действует электромагнитный момент:


.

(5)


При работе машины в двигательном режиме электромагнитный момент является вращающим, а в генераторном режиме - тормозным.[1]

1.2 Реакция якоря машины постоянного тока


При холостом ходе магнитный поток в машине создается только НС Fв обмотки возбуждения. В этом случае магнитный поток Фв при неизменном воздушном зазоре между якорем и сердечником главного полюса (что характерно для многих машин постоянного тока) распределяется симметрично относительно продольной оси машин.

При работе машины под нагрузкой по обмотке якоря проходит ток, и НС якоря создает свое магнитное поле. Воздействие поля якоря на магнитное поле машины называют реакцией якоря. Магнитный поток Фaq, созданный НС якоря Faq в двухполюсной машине при установке щеток на нейтрали направлен по поперечной оси машины, поэтому магнитное поле якоря называют поперечным. В результате действия потока Фaq симметричное распределение магнитного поля машины искажается, и результирующий поток Фрез оказывается сосредоточенным в основном у краев главных полюсов. При этом физическая нейтраль б-б (линия, соединяющая точки окружности якоря, в которых индукция равна нулю) смещается относительно геометрической нейтрали а-а на некоторый угол β (рисунок 2). В генераторах физическая нейтраль смещается по направлению вращения якоря; в двигателях - против направления вращения.


Рисунок 1.2 - Магнитное поле машины постоянного тока: а) от обмотки возбуждения; б) от обмотки якоря; в) результирующее (Фв - магнитный поток при х.х.; Фaq - магнитный поток, созданный НС якоря; Фрез - результирующий поток; а-а - геометрическая нейтраль; б-б - физическая нейтраль; β – угол смещения нейтрали б-б)


Вследствие сосредоточенного характера обмотки возбуждения, кривая распределения создаваемой ею НС имеет форму прямоугольника, а кривая индукции- форму криволинейной трапеции (рисунок 3).


Рисунок 1.3 - Распределение индукции в воздушном зазоре машины постоянного тока: а) от обмотки возбуждения; б) от обмотки якоря; в) результирующее (Bв - кривая индукции от обмотки возбуждения; Fв - кривая распределения НС; Faq - НС якоря; Baq – кривая магнитной индукции в воздушном зазоре; - величина воздушного зазора в точке x; Bрез - кривая результирующей индукции)


На основании закона полного тока НС якоря, действующая в воздушном зазоре на расстоянии x от оси главных полюсов определится выражением:


.

(6)


Следовательно, НС якоря Faq изменяется линейно вдоль его окружности; под серединой главного полюса она равна нулю, а в точках, где установлены щетки, имеет максимальное значение. Магнитная индукция в воздушном зазоре при ненасыщенной магнитной системе:


,

(7)


где - величина воздушного зазора в точке x.

Из последнего выражения следует, что под полюсом при = const индукция Baq изменяется линейно вдоль окружности якоря. В межполюсном пространстве резко возрастает длина магнитной силовой линии, т.е. величина и индукция Baq резко уменьшается. В результате кривая распределения приобретает седлообразную форму. Кривая результирующей индукции получается алгебраическим сложением ординат кривых и .

Реакция якоря оказывает неблагоприятное влияние на работу машины постоянного тока:

а) физическая нейтраль смещается относительно геометрической нейтрали на некоторый угол, что ухудшает коммутацию коллекторной машины;

б) результирующий магнитный поток машины при насыщенной магнитной цепи уменьшается, а значит, уменьшается ЭДС Е, индуктированная в обмотке якоря при нагрузке, по сравнению с ЭДС Е0 при холостом ходе;

в) в кривой распределения индукции в воздушном зазоре под краями главных полюсов возникают пики, способствующие образованию в машине кругового огня.[3]

1.3           Момент двигателя постоянного тока


Если обмотку возбуждения и якорь двигателя подключить к сети постоянного тока напряжением U то, возникает электромагнитный вращающий момент Мэм. Полезный вращающий момент М на валу двигателя меньше электромагнитного на значение противодействующего момента, создаваемого в машине силами трения и равного моменту Мх в режиме х.х., т. е. М = Мэм—Мх.

Пусковой момент двигателя должен быть больше статического тормозного Мт в состоянии покоя ротора, иначе якорь двигателя не начнет вращаться. В установившемся режиме (при n = соnst) имеет место равновесие вращающего М и тормозного Мт моментов:


М = Мэм – Мх = Мт  (8)


Из механики известно, что механическая мощность двигателя может быть выражена через вращающий момент и угловую скорость


Следовательно, полезный вращающий момент двигателя М (Н • м), выраженный через полезную мощность Р (кВт) и частоту вращения n (об/мин),


М =9550P/n  (10)


Обсудим некоторые важные вопросы пуска и работы двигателей постоянного тока. Из уравнения электрического состояния двигателя следует, что


Iя = (U -- E)/Rя  (11)


В рабочем режиме ток якоря Iя ограничивается э. д. с. E, если n приблезительно равно nном. В момент пуска п = 0, э. д. с. Е = 0 и пусковой ток Iп = U/Rя в 10—30 раз больше номинального. Поэтому прямой пуск двигателя, т. е. непосредственное включение якоря на напряжение сети, недопустимо. Чтобы ограничить большой пусковой ток якоря, перед пуском последовательно с якорем включается пусковой реостат Rп с небольшим сопротивлением. В этом случае при Е = О


Iп=U/(Rя – Rп) << U/Rя (12)


Сопротивление реостатаRп выбирается по допустимому току якоря.

По мере разгона двигателя до номинальной частоты вращения э. д. с. Е увеличивается, а ток уменьшается и пусковой реостат постепенно и полностью выводится (пусковые реостаты рассчитываются на кратковременное включение). Регулировочный реостат Rрег в цепи возбуждения с относительно большим сопротивлением (десятки и сотни Ом) перед пуском двигателя полностью выводится, чтобы при пуске ток возбуждения и магнитный поток статора Ф были номинальными. Это приводит к увеличению пускового момента, который обеспечивает быстрый и легкий разгон двигателя.

После пуска и разгона наступает установившийся режим работы двигателя, при котором тормозной момент на валу Мт будет уравновешиваться моментом, развиваемым двигателем Мэм, т. е. Мэм == Мт (при n = соnst.)

Электродвигатели постоянного тока могут восстанавливать нарушенный изменением тормозного момента установившийся режим работы, т. е. могут развивать вращающий момент М, равный новому значению тормозного момента Мт при соответственно новой частоте вращения n'.

Действительно, если тормозной момент нагрузки Мт окажется больше вращающего момента двигателя Мэм, то частота вращения якоря уменьшится. При постоянных напряжении U и потоке Ф это вызовет уменьшение э. д. с. Е якоря, увеличение тока якоря и вращающего момента до наступления равновесия, при котором Мэм = Мт и n' <n. При уменьшении тормозного момента до Мт аналогично наступает установившийся режим работы при Мэм = Мт' и n">n'. Таким образом, двигатели постоянного тока обладают свойством саморегулирования могут развивать вращающий момент, равный тормозному.

1.4           Регулирование частоты


Частота вращения якоря двигателя постоянного тока определяется на основании уравнения электрического состояния U = Е + RяIя после подстановки в него э. д. с. Е = сФn:


  (13)


Падение напряжения в якоре RяIя небольшое: при номинальной нагрузке оно не превышает 0,03 — 0,07 Uном.

Таким образом, частота вращения двигателя постоянного тока прямо пропорциональна приложенному напряжению сети и обратно пропорциональна магнитному потоку статора. Из уравнения (13) следует, что регулировать частоту вращения двигателя можно двумя способами: изменяя поток статора Ф или напряжение U подводимое к двигателю. Регулирование частоты вращения изменением магнитного поля машины осуществляется с помощью регулировочного реостата в цепи возбуждения двигателя. Изменение подводимого к двигателю напряжения производится регулированием напряжения источника.

Можно ввести дополнительный реостат в цепь якоря. В этом случае пусковой реостат заменяется пускорегулирующим Rпр Такой реостат выполняет функции как пускового реостата, так и регулировочного. Уравнение (13) при этом имеет вид


 (14)


Отсюда следует, что регулирование частоты вращения двигателя можно осуществить, изменяя напряжение сети, сопротивление пускорегулирующего реостата или поток статора.

Реверсирование двигателей. Из уравнения вращающего момента двигателя Мэм = kФIя вытекает, что реверсирование, т. е. изменение направления вращения якоря, может быть осуществлено изменением направления тока в обмотке возбуждения (потока Ф) или тока якоря.

Для реверсирования двигателя «на ходу» изменяют направление тока якоря (переключением якорных выводов), а обмотку возбуждения не переключают, так как она обладает большой индуктивностью и разрыв ее цепи с током недопустим. Реверсирование отключенного двигателя осуществляется и изменением направления тока в обмотке возбуждения (переключением ее выводов).[4]


2.     Допустимые режимы работы двигателей

2.1           Допустимые режимы при изменении напряжения


Двигатели допускают длительную работу с номинальной нагрузкой при повышении напряжения до 10% и понижении до 5% от номинального. При понижении напряжения на 5% от номинального сила тока статора при номинальной нагрузке увеличивается на 5% от номинального. Как следствие, возрастут потери в меди, но одновременно за счёт снижения напряжения уменьшатся потери в активной стали. Поэтому суммарные потери в двигателе останутся примерно такими же, как и при номинальном напряжении.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.