реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Теоретические основы электротехники

Теоретические основы электротехники

Содержание

 

Введение

Раздел 1

Раздел 2

Раздел 3

Список используемой литературы


Введение


Практически все области деятельности современного общества развиваются на базе все более широкого применения электротехники.

Электрификация - это широкое развитие производства электроэнергии и её внедрение во все области человеческой деятельности и быт.

Электрические и магнитные явления были известны в глубокой древности, но началом развития науки об этих явлениях принято считать 1600 год, когда Гильберт опубликовал результаты исследования электрических и магнитных явлений. Важным этапом в развитии науки об электричестве были исследования атмосферного электричества, выполненные М.В. Ломоносовым, Г.В. Рихманом и Б. Франклином.

Современная электротехническая наука, на базе которой развиваются практические применения электротехники, начинается с открытия М. Фарадеем (1831 г) закона электромагнитной индукции. В первой половине XIX века был создан химический источник постоянного тока, были исследованы химические, световые, магнитные проявления тока (А. Вольта, А.М. Ампер, В.В. Петров, Г.Х. Эрстед, Э.Х. Ленц).

Разработкой теории электромагнитных явлений Д.К. Максвеллом в "Трактате об электричестве и магнетизме" (1873 г.) завершается создание классической теории электрических и магнитных явлений.

Опыты Г.Р. Герца (1886-1889 гг.), работы П.Н. Лебедева (1895 г), изобретение радио А.С. Поповым (1895 г) и работы ряда зарубежных учёных подтверждают экспериментально выводы теории о распространении электромагнитных волн.

Теория электрических и магнитных явлений и теоретические основы электротехники в последующее время излагались в книгах А.А. Эйхенвальда, К.А. Круга. В течении ряда лет В.Ф. Миткевич развивал и углублял основные положения теории. Им был опубликован первый в СССР труд по физическим основам электротехники. Ближайшие ученики В.Ф. Миткевича - П.Л. Калантаров и Л.Р. Нейман - создали один из первых учебников по теоретическим основам электротехники. Широко известны у нас книги по теоретическим основам электротехники Л.Р. Неймана и К.С. Демирчяна, К.М. Поливанова, П.А. Ионкина.

Вместе с развитием теории идёт и быстрое расширение практического применения электротехники, вызванное потребностями бурно развивающегося промышленного производства.

В первых электротехнических установках использовались электрохимические источники энергии. Например, в 1838 году Б.С. Якоби осуществил привод гребного винта шлюпки от двигателя, получавшего питание от электрохимического источника энергии.

В 1870 г.З.Т. Грамм сконструировал первый генератор постоянного тока с кольцевым якорем, который имел самовозбуждение. Генератор был усовершенствован Э.В. Сименсом. Использование постоянного тока ограничивало применение электротехнических установок, так как не могла быть решена проблема централизованного производства и распределения электроэнергии, а появившиеся установки однофазного переменного тока с однофазными двигателями не удовлетворяли требованиям промышленного производства.

Электрическая энергия в начальный период использовалась в основном для освещения. Система переменного тока была впервые применена П.Н. Яблочковым (1876 г) для питания созданных им электрических свечей. Совместно с инженерами завода Грамма им был сконструирован и построен многофазный генератор переменного тока с рядом кольцевых несвязанных обмоток, обеспечивающих питание групп свечей. В цепи обмоток включались последовательно первичные обмотки индукционных катушек, от вторичных обмоток которых получали питание группы свечей. С помощью этих катушек, являющихся трансформаторами с разомкнутой магнитной цепью, был впервые решен вопрос о возможности дробления энергии, поступающей от источника переменного тока. В дальнейшем трансформаторы выполнялись с замкнутой магнитной цепью (О. Блати, М. Дерн, К. Циперновский).

Решение проблемы централизованного производства энергии, её распределения и создания простого и надёжного двигателя переменного тока принадлежит М.О. Доливо-Добровольскому. На Всемирной электротехнической выставке в 1891 году им демонстрировалась система трёхфазного переменного тока, в состав которой входили линия передачи длиной 175 км, разработанные им трёхфазный генератор, трёхфазный трансформатор и трёхфазный асинхронный двигатель.

Из других достижений этого времени следует отметить изобретение Н.Г. Славяновым и Н.Н. Бенардосом электрической сварки. С этого времени начинается широкое внедрение электрической энергии во все области народного хозяйства: строятся мощные электростанции, в промышленность внедряется электропривод, появляются новые виды приборов и электрических установок, развивается электрическая тяга, появляются электрохимия и электрометаллургия, электроэнергия начинает применяться в быту. На базе развития электротехнической науки делают первые успехи электроника и радиотехника.

Электротехника как наука является областью знаний, в которой рассматриваются электрические и магнитные явления и их практическое использование.

Современная энергетика - это в основном электроэнергетика. Электрическая энергия вырабатывается на станциях электрическими генераторами, преобразовывается на подстанциях и распределяется по линиям электропередачи и электрическим сетям.

Электрическая энергия применяется практически во всех областях человеческой деятельности. Производственные установки на фабриках и заводах имеют в подавляющем большинстве электрический привод, т.е. приводятся в движение при помощи электрических двигателей. Для измерений наиболее широко используются электрические приборы и устройства. Измерения электрических величин при помощи электрических устройств составляют особую дисциплину. Широко применяются электрические приборы и устройства в сельском хозяйстве, связи и в быту.

Непрерывно расширяющееся применение различных электротехнических и радиотехнических устройств обуславливает необходимость знания специалистами всех областей науки и техники основных понятий об электрических, магнитных и электромагнитных явлениях и их практическом использовании. Особенно важно при этом выйти из узкого круга вопросов, связанных с электрическими цепями, понять эти явления с позиций единого электромагнитного поля.


Раздел 1


Дано: E1=22 В, E2=10 В, R1=2 Ом, R2=5 Ом, R3=15 Ом.

Определить ток I3 через сопротивление R3 приведенной на рисунке 1 схемы, используя методы:

эквивалентных преобразований;

эквивалентного генератора (активного двухполюсника);

узловых потенциалов;

суперпозиции (наложения).



Решение:

Метод эквивалентных преобразований.

1) Источники Е1 и Е2 включенные последовательно с ними сопротивления R1 и R2 заменяются источниками тока I1 и I2 с параллельно включенными сопротивлениями R1 и R2 заменяются источниками тока I1 и I2 с параллельно включенными сопротивлениями R1 и R2


I1=E1/R1=22/2=11A

I2=E2/R2=10/5=2A


Эквивалентная схема после замены источников ЭДС на источники тока:


 


2) Так как источники тока I1 и I2 включены параллельно, их можно заменить одним Iэкв.; параллельно включенные сопротивления R1 и R2 — сопротивлением Rэкв.


Iэкв.= I1 + I2 = 11+2=13A

1/Rэвк. = 1/R1 + 1/R2 = 1/2+1/5=7/10 Ом

Rэкв. = 10/7= 1,43Ом


Эквивалентная схема после замены нескольких источников тока одним:



3) Источник тока Iэкв. и сопротивление Rэкв., включенное параллельно ему, преобразуется в источник ЭДС с внутренним сопротивлением Rэкв.


Eэкв. = Iэкв. ∙ Rэкв. =13×1,43 = 18,6 В


что приводит к схеме:


4) По закону Ома находим ток I3.


I3 = Eэкв./Rэкв.+R3 = 18,6/15+1,43 = 1,13А


Ответ: I3 =1,13A


 

Метод эквивалентного генератора

Определяем ЭДС Eг эквивалентного генератора одним из методов расчёта. Например, составив контурное уравнение по II закону Кирхгофа.


I1 (R1+R2) = E1-E2


найдём ток I1 = I2



I1=I2= (E1-E2) / (R1+R2)

I2= 12/7= 1,7A

Тогда: Ег = U12 = E2 + I 2R2

Eг = U12 = 10+1,7∙5 = 18,5A


2) Находим внутреннее сопротивление Rг эквивалентного генератора, с учётом того, что по отношению к его зажимам 1-2 сопротивления R1 R2 включены параллельно, т.е.


Rг=R1× R2/ (R1+R2)

Rг=2×5/ (2+5) =1,43Ом


3) По закону Ома находится ток I3


I3 =Eг/ (Rг+R3)

I3= 18,5/ (1,43+15) = 1,13A

Ответ: I3=1,13A

 

Метод узловых потенциалов.

Определяется напряжение U12 между узлами 1 и 2 по выражению:


U12 = (E1 G1 + E2 G2) / (G1 +G2 +G3)

G1=1/R1=1/2=0,5; G2= 1/R2 =1/5=0,2;

G3= 1/R3 =1/15=0,066

U12= (22×0,5 +10×0,2) / (0,5+0,2+0,066) = 16,97B


2) По закону Ома находится ток I3


I3 = U12/R3

I3= 16,97 /15 =1,13A

Ответ: I3 = 1,13A

 

Метод суперпозиции. Источник ЭДС Е2 заменяется его внутренним сопротивлением (в рассматриваемой задаче приняты идеальные источники ЭДС, то есть их внутренние сопротивления равны 0)

Схема для определения частичного тока, создаваемого источника ЭДС Е1:



2) Находится частичный ток I3 c использованием правил определения эквивалентных сопротивлений при параллельном и последовательном соединении пассивных элементов и закона Ома.

а) эквивалентное сопротивление R23 параллельно включенных сопротивлений R1 и R2


R23 = R2×R3/ (R2+R3) = 5×15/ (5+15) = 3,75 Ом


Полное сопротивление цепи


Rц = R1+R23 = 2 +3,75 = 5,75 Ом


б) Ток II в неразветвленной части цепи:


II=E1/Rц = 22/5,75 = 3,82А


в) напряжение на сопротивлении R3


U3 = U23 =I1× R23 U3 = 3,82×3,75 = 14,34 B


г) частичный ток I3'


I3' = U3/R3 = 14,34/15 = 0,956 A


3) Для определения частичного тока I3'' расчет следует повторить, оставив в цепи только источник ЭДС Е2.



а) эквивалентное сопротивление R13 параллельно включенных сопротивлений R1 и R3


R13 = R1×R3/ (R1+R3) = 2×15\ (2+15) = 1,76 Ом


Полное сопротивление цепи


Rц = R2+R13 = 5 +1,76 = 6,76 Ом


б) Ток I2 в неразветвленной части цепи:


I2 = E2/Rц = 10/6,76 = 1,47A


в) напряжение на сопротивлении R3


U3 = U13= I 2×R13

U3 = 1,47×1,76 = 2,6B


г) частичный ток I3''


I3''= U3/R3 = 2,6/15 = 0,17A


4) Действительный ток I3


I3 = I3' + I3''

I3 = 0,956 + 0,17 = 1,13A


Ответ: I3 = 1,13А

 

Раздел 2


Для данной схемы состоящей из источников ЭДС и тока, активных, индуктивных и ёмкостных сопротивлений:

найти линейную частоту;

определить действующие значения токов во всех ветвях схемы и напряжения на всех комплексных сопротивлениях и каждом пассивном элементе;

определить полную, активную и реактивную мощности каждого источника электроэнергии и всех действующих в цепи источников;

составить баланс активных мощностей;

записать уравнения мгновенных значений ЭДС для источников ЭДС;

построить векторные диаграммы токов и напряжений



R1=10Ом; R2=40Ом; R4=25Ом; R5=15Ом;

L1=65мГн; L6=50мГн;

C1=65мкФ; C3=250мкФ; C4=125мкФ;

Еm2=24,5B ψ=80°; Еm6=24,5B ψ=-10°;

ω=400рад/с;

Jm5=5,5A ψ=0°


Решение:

Для определения линейной частоты f следует использовать связывающее её с угловой частотой ω соотношение


ω=2πf

f= ω/2π=400/2×3,14=63,69рад/с


Расчёт токов в ветвях следует вести в изложенной ниже последовательности

а) сопротивление реактивных элементов


XL= ω×L

XC=1/ ω×С

XL1= ω×L1=400×65×10-3=26Ом

XC1=1/ ω×С1=1/400×65×10-6=1/0,026=38,5Ом

XC3=1/ ω×С3=1/400×250×10-6=1/0,1=10Ом

XC4=1/ ω×С4=1/400×125×10-6=1/0,05=20Ом

XL6= ω×L6=400×50×10-3=20Ом


б) заданные числа в комплексной форме


Z1=R1+j (XL1 - XC1) =10+j (26-38,5) =10-j12,5=16e-j51°34'

À=a-jb=Aejφ

=arctg (-12,5/10) =-51°34'

A=

Z2=R2=40=40ej0°

Z3=-j XC3=-j10=10e-j90°

Z4= R4-j XC4=25-j20=32,015e-j36°66'

Z5= R5=15=15ej0°

Z6=j XL6=j20=20ej90°


в) преобразуем источник тока J5 в источник ЭДС E с внутренним сопротивлением Z5


E= J5Z5=5,5ej0°×15ej0°=82,5ej0°


Таблица 1-Результаты расчёта заданных величин и параметров схемы в алгебраической и показательной форме.

Величина

Алгебраическая форма

Показательная форма

Z1

10-j12,5

16e-j51°34'

Z2

40

40ej0°

Z3

-j10

10e-j90°

Z4

25-j20

32,015e-j36°66'

Z5

15

15ej0°

Z6

j20

20ej90°

E2

4,25+j24,127

24,5ej80°

E6

9,85-j1,736

10e-j10°

J5

5,5

5,5ej0°

E

82,5

82,5ej0°


г) контурные уравнения для заданной расчётной схемы имеют вид



д) по найденным определителям вычисляем контурные токи:



е) по контурным токам определяем токи в ветвях цепи:


==-0,5136+j2,0998=2,1617ej103°74'

==0,5470239-j0,134203=0,5632e-j13°78'

==-4,2601-j3,76139=5,683e-j138°55'

==0,0334239+j1,965597=1,96588ej89°02'

==4,80712+j3,627187=6,022ej37°03'

==-4,7737-j1,66159=5,0546e-j160°80'


Таблица 2 - Результаты расчётов токов и напряжений.

Искомая величина

Алгебраическая форма

Показательная форма

Действующее значение

Токи ветвей, А

-0,5136+j2,0998

2,1617ej103°74'

2,1617

0,5470239-j0,134203

0,5632e-j13°78'

0,5632

-4,2601-j3,76139

5,683e-j138°55'

5,683

0,0334239+j1,965597

1,96588ej89°02'

1,96588

4,80712+j3,627187

6,022ej37°03'

6,022

-4,7737-j1,66159

5,0546e-j160°80'

5,0546

Напряжения на сопротивлениях,

В

EZ1

21,1115+j27,418

34,604ej52°40'

34,604

UR1

-5,136+j20,998

21,61ej103°74'

21,61

UXL1

-54,59-j13,35

56, 204e-j166°25'

56, 204

UXc1

80,75+j19,75

83,13ej13°74'

83,13

EZ2

21,8809-j5,368

22,5298e-j13°78'

22,5298

UR2

21,8809-j5,368

22,529e-j13°78'

22,529

EZ3

-37,6139+j42,601

56,83ej131°44'

56,83

UXc3

-37,6139+j42,601

56,83ej131°44'

56,83

EZ4

40,1475+j48,4714

62,9389ej50°36'

62,9389

UR4

0,8355+j49,139

49,147ej89°02'

49,147

UXc4

39,31-j0,668

39,31e-j0°97'

39,31

EZ5

72,1068+j54,4078

90,3305ej37°03'

90,3305

UR5

72,106+j54,407

90,33ej37°03'

90,33

EZ6

33,2318-j95,474

101,092e-j70°80'

101,092

UXL6

33,23-j95,474

101,09e-j70°80'

101,09

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.