реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Современная научно-техническая документация на статистические методы анализа результатов измерений

Современная научно-техническая документация на статистические методы анализа результатов измерений











«Современная НТД на статистические методы анализа прямых,

косвенных, совместных, однократных и многократных измерений»


План


1. Обеспечение единства измерений

2. Характеристики погрешности измерений

3. Методы обработки результатов прямых однократных измерений

4. Метод обработки результатов прямых измерений с многократным наблюдением

5. Методы обработки результатов косвенных измерений.

6. Обработка данных косвенных измерений выборочным методом

Список использованной литературы

1. Обеспечение единства измерений


Метрология – отрасль физики, изучающая единицы измерения, устанавливающая эталоны и разрабатывающая методы и средства точных измерений, а также способы достижения требуемой точности.

Практическая метрология занимается изучением вопросов практического применения в различных сферах деятельности разработок теоретической метрологии с обязательным применением положений законодательной метрологии. Таким образом, сущность практической метрологии сводится к измерению любой заданной величины любого объекта измерения и получение результата измерения с максимально возможной точностью.

Следовательно, непосредственной целью измерения (по определению МИ 1317 – 2004) является определение истинных значений постоянной или изменяющейся измеряемой величины. Результат измерений является реализацией случайной величины, равной сумме истинного значения измеряемой величины и погрешности измерения. В качестве измеряемых величин принимают параметры модели объекта измерений.

С целью исключения разночтений различных методик проведения измерений, самодеятельности в обработке результатов измерений, и их статистического анализа создана законодательная база, устраняющая все вышеперечисленные недостатки и на государственном уровне создавшая систему обеспечения единства измерений.

По данному разделу работы можно указать следующую НТД:

РМГ 29 – 99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения.

ГОСТ Р 8. 563 – 96 Государственная система обеспечения единства измерений. Методика выполнения измерений.

ГОСТ 8. 009 – 84 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерения.

МИ 1317 – 2004 Рекомендация. Результаты и характеристики погрешностей измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров.

РД 50 – 453 – 84 Государственная система обеспечения единства измерений. Характеристики погрешностей средств измерений в реальных условиях эксплуатации. Методы расчета.

Несмотря на то, что ряд НТД носит рекомендательный характер, положения, изложенные в них, являются обязательными для исполнения и распространяются на нормативные, методические и технические документы, техническую литературу, в которой указывают требования к измерениям или описывают измерения, проводимые в научных исследованиях и др.

Для удобства работы с числовыми значениями результатов измерений и погрешностей измерений, МИ 1317 – 2004 рекомендует наименьшие разряды числовых значений результатов измерений принимать такими же, как и наименьшие разряды числовых значений среднего квадратического отклонения абсолютной погрешности измерений или числовых значений границ, в которых находится абсолютная погрешность измерений (или статистических оценок этих характеристик погрешности).

В качестве функции плотности распределения вероятностей погрешности измерения принимают закон, близкий к нормальному усеченному, если имеются основания предполагать, что реальная функция распределения−функция симметричная, одномодальная, отличная от нуля на конечном интервале значений аргумента, и другая информация о плотности распределения отсутствует.

В качестве функции плотности распределения вероятностей составляющих погрешности измерений, для которых известны только пределы допускаемых значений, т.е. границы интервала, в которых находится соответствующая составляющая погрешности измерений с вероятностью 1, при расчетах характеристик погрешности измерений принимают закон равномерной плотности, если отсутствует информация об ином виде распределения.


2. Характеристики погрешности измерений


Рекомендация МИ 1317 – 2004 устанавливает следующие группы характеристик погрешности измерений:

1.  Задаваемые в качестве требуемых или допускаемых – нормы характеристик погрешности измерений (нормы погрешности измерений).

2.  Приписываемые любому результату измерений из совокупности результатов измерений, выполняемых по одной и той же аттестованной МВИ– приписанные погрешности измерений.

3.  Отражающие близость отдельного, экспериментально полученного результата измерений к истинному значению измеряемой величины – статистические оценки характеристик погрешности измерений (статистические оценки погрешности измерений).

Нормы погрешности измерений, а также приписанные характеристики – представляют собой вероятные характеристики (характеристики генеральной совокупности) случайной величины – погрешности измерений. Эти нормы применяют преимущественно при массовых технических измерениях, выполняемых, например, при технологической подготовке производства, в процессе разработки, испытаний и эксплуатации продукции и т.п.

При измерениях, которые выполняются при проведении научно – исследовательских и метрологических работ (определение физических констант; свойств и состава стандартных образцов и т.п.) преимущественно применяют статистические оценки погрешности измерений. Они представляют собой статистические (выборочные) характеристики случайной величины – погрешности измерения.

В тоже время Рекомендация устанавливает следующие альтернативные вероятностные и статистические характеристики погрешности измерений:

1.  среднее квадратическое отклонение погрешности измерений;

2.  границы, в пределах которых погрешность измерений находится с заданной вероятностью;

3.  характеристики случайной и систематической составляющих погрешности измерений.

Характеристики погрешности измерений и их статистическая оценка приведены в таблице 1.


Таблица 1.

Характеристики погрешности измерений

Статистические оценки (по2.1.3)

Среднее квадратическое отклонение погрешности измерений

Оценка [Д] и (в случае необходимости) нижняя у1 [Д] и верхняя уh [Д] границы доверительного интервала, доверительная вероятность Pдов Д

Границы, в которых погрешность измерений находится с заданной вероятностью

Оценка нижней  и верхней  границ интервала, вероятность Р

Характеристики случайной составляющей погрешности измерений: Среднее квадратическое отклонение нормализованная автокорреляционная функция Характеристики нормализованной автокорреляционной функции (например, интервал корреляции)

Оценка [] и (в случае необходимости) нижняя у1 [] и верхняя уh [] границы доверительного интервала, доверительная вероятность Pдов Д

Оценка функции (ф)

Оценка характеристики

Характеристики неисключенной систематической составляющей погрешности измерений: среднее квадратическое отклонение неисключенной систематической составляющей границы, в которых неисключенная систематическая составляющая находится с заданной вероятностью

Оценка [Дs] и (в случае необходимости) нижняя у1 [Дs] и верхняя уh [Дs] границы доверительного интервала, доверительная вероятность Pдов s

Оценка нижней  и верхней  границ интервала, вероятность Рs


В таблице 1 приведены обозначения для характеристик абсолютной погрешности измерений. Для обозначения характеристик относительной погрешности букву ∆ заменяют на д.

Рекомендуемое значение вероятности (доверительной вероятности) Р = 0,95 .

В особых случаях, например при измерениях, которые нельзя повторить, допускается указывать доверительные границы или расширенную неопределенность для уровня доверия Р и более высоких вероятностей.

Статистические оценки характеристик погрешности измерений представляют одной или при необходимости несколькими характеристиками и указывают их в единицах измерения (абсолютные) или процентах (долях) от результата измерения (относительные).


3. Методы обработки результатов прямых однократных измерений


В практической деятельности большинство проводимых измерений являются прямыми и однократными, в обычных условиях их точность вполне приемлема.

Прямые однократные измерения – процесс, при котором искомое значение величины находят непосредственно из опытных данных, причем сам процесс измерения выполняется только один раз.

За результат однократного измерения А принимается значение величины, полученное при измерении.

Выполнение однократных измерений обосновывают следующими факторами:

− производственной необходимостью (невозможность повторения измерения, экономическая целесообразность и т. д.);

− возможностью пренебрежения случайными погрешностями;

− случайные погрешности существенны, но доверительная граница погрешности результата измерения не превышает допускаемой погрешности измерения.

Метрологический анализ однократного измерения выявляет одно в нем следующие особенности:

1.  Из множества возможных значений отсчета получается и используется только одно.

2.  Представление о законе распределения вероятностей отсчета и его среднем квадратическом отклонении формируется на основе информации и опыта ранее проведенных аналогичных измерений.

При использовании этой информации уточняется:

− физическая сущность изучаемого явления;

− уточняется его модель;

− определяются факторы, влияющие на точность измерения, и меры, направленные на уменьшение влияния этих факторов (экранирование, компенсация электрических и магнитных полей и др.);

− значения поправок;

− выбор решения в пользу той или иной методики измерения;

− выбирается средство измерения, изучаются его метрологические характеристики и опыт проведения подобных измерений, проводимых ранее.

Итогом этой предварительной работы должна стать твердая уверенность в том, что точность однократного измерения достаточна для решения поставленной задачи.

Если это условие выполняется, то производится процесс измерения с целью получения одного значения отсчета.

Но поскольку отсчет (по основному постулату метрологи) является случайным числом, а одно единственное значение отсчета xi и получения одного единственного значения показаний Xi средства измерения, имеющего туже размерность, что и измеряемая величина, это приводит к выводу – необходимо определить погрешность, которая допущена при измерении, и провести оценивание этой погрешности.

Существует две методики оценивания погрешностей и неопределенности результата измерений, которые представлены в НТД Р 50. 038 – 2004 «Измерения прямые однократные» и подразделяются на два типа: тип А и тип В согласно требованиям РМГ 43 – 2001 (Государственная система обеспечения единства измерений. Применение «Руководства по выражению неопределенности измерений»).

Оценивание погрешности и неопределенности результата измерения по методике типа А соответствует методике выражения неопределенности измерений, принятых в основополагающих документах (НД) по метрологии, применяемых в странах – участниках Соглашения.

При оценивании погрешности и неопределенности результата измерения по методике типа В, принятой «Руководством», учитывается, что составляющими погрешности результата измерения являются погрешности СИ (средство измерения), метода измерения, оператора, а также погрешности, обусловленные изменением условий измерения. Погрешность результата однократного измерения чаще всего представлена НСП (неисключенная систематическая погрешность) и случайными погрешностями.

Характеристики НСП в этом случае могут быть представлены границами ±и и доверительными границами ±и(Р), а характеристикой случайных погрешностей могут быть – СКО S и доверительные границы ±е(Р).

Погрешности СИ определяют на основании их метрологических характеристик, которые указываются в нормативных и технических документах; погрешности метода измерения и оператора должны быть определены при разработке и аттестации конкретной МВИ.

Оценивание случайной погрешности и стандартной неопределенности, оцениваемой по типу А, результата измерения

Доверительные границы случайной погрешности и стандартную неопределенность результата измерения вычисляют в следующем порядке.

Если случайные погрешности представлены несколькими СКО Si, то СКО результата однократного измерения S(A) вычисляют по формуле:


1.  Учитывая то, что погрешности представлены несколькими СКО, тогда стандартную неопределенность результата однократного измерения UA вычисляют по формуле:



Где m - число составляющих случайных погрешностей;


UiA = Si.


Доверительную границу случайной погрешности измерения е(P) вычисляют по формуле



где ZP/2 – P/2 точка нормированной функции Лапласа, отвечающая вероятности P .При доверительной вероятности P = 0,95 Z095/2 принимают равным 2, при P=0,99 Z0,99/2=2,6 .

Если случайные погрешности представлены доверительными границами еi(P), соответствующими одной и той же вероятности, доверительную границу случайной погрешности результата однократного измерения вычисляют по формуле:



1.4.         Если случайные погрешности представлены доверительными границами, соответствующими разным вероятностям, сначала определяют СКО измерения по формуле:



А затем вычисляют доверительные границы случайной погрешности результата измерения по формуле



Оценивание неисключенной систематической погрешности и стандартной неопределенности, оцениваемой по типу В, результата измерения.

При условии, когда неисключенная систематическая погрешность (НСП) выражена границами этой погрешности и если среди составляющих погрешности результата измерения в наличии одна НСП, то стандартную неопределенность UB, обусловленную неисключенной систематической погрешностью, заданной своими границами ± И оценивают по формуле:



Доверительные границы НСП результата измерения вычисляют следующим образом:

1.5. Доверительную границу НСП результата измерения (без учета знака) при наличии нескольких НСП, заданных своими границами , доверительную границу НСП результата измерения (без учета знака) вычисляют по формуле


где k – поправочный коэффициент, определяемый принятой доверительной вероятностью и числом m составляющих

При доверительной вероятности Р =0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99 поправочный коэффициент k принимают равным 1,45, если число суммируемых составляющих m

Если число составляющих равно четырем (m = 4), то поправочный коэффициент k ≈ 1,4; при m = 3 k ≈ 1,3; при m = 2 k ≈ 1,2.

Суммарную стандартную неопределенность Uc,B (при условии, указанном выше в п. 1.1) вычисляют по формуле



1.  6. При наличии нескольких НСП, заданных доверительными границами рассчитанными по формуле п.1,1. доверительную границу НСП результата однократного измерения вычисляют по формуле



Суммарную стандартную неопределенность с учетом условий, указанных выше, вычисляют по формуле


где − доверительная граница j − й НСП, соответствующая доверительной вероятности Рi;

k и ki − коэффициенты, соответствующие доверительной вероятности Р и Рi

Оценивание погрешности и расширенной неопределенности результата измерения.

1.  7. Если погрешности метода измерения и оператора пренебрежимо малы по сравнению с погрешностью используемых СИ (не превышает 15% погрешности СИ), то за погрешность результата измерения принимают погрешность используемых СИ.

1.8. Если  то НСП или стандартной неопределенностью, оцениваемой по типу В, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения доверительные границы случайной погрешности или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

Если  то случайными погрешностями или стандартной неопределенностью, оцениваемой по типу А, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения границы НСП или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

1.9. Если  то доверительную границу погрешности результата измерений ∆Р вычисляют по формуле


где К – коэффициент , значение которого для доверительной вероятности 0,95 равно 0,76; для доверительной вероятности 0,99 значение коэффициента К равно 0,83.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.