реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Реферат по физике. Уф-излучение

Реферат по физике. Уф-излучение

Проект по физике

По теме:

Ультрафиолетовое излучение

Выполняла  студентка  2 курса  группы 21У

Ивченко Наталья

Руководитель проекта:  Китай А.Ю.

Москва 2011

·       Ультрафиоле?товое излуче?ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовым концом видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9?1014 — 3?1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

·     История открытия

·       Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Shri Madhvacharya в его трудеAnuvyakhyana. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

·       Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

Виды ультрафиолетового излучения

Наименование

Аббревиатура

Длина волны внанометрах

Количество энергии нафотон

Ближний

NUV

400 нм — 300 нм

3.10 — 4.13 эВ

Средний

MUV

300 нм — 200 нм

4.13 — 6.20 эВ

Дальний

FUV

200 нм — 122 нм

6.20 — 10.2 эВ

Экстремальный

EUV, XUV

121 нм — 10 нм

10.2 — 124 эВ

Вакуумный

VUV

200 нм — 10 нм

6.20 — 124 эВ

Ультрафиолет А, длинноволновой диапазон, Чёрный свет

UVA

400 нм — 315 нм

3.10 — 3.94 эВ

Ультрафиолет B (средний диапазон)

UVB

315 нм — 280 нм

3.94 — 4.43 эВ

Ультрафиолет С, коротковолновой, гермицидный диапазон

UVC

280 нм — 100 нм

4.43 — 12.4 эВ

·       Чёрный свет.

·       Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении (прохождении) от некоторых материалов спектр переходит в область фиолетового видимого излучения.

·       Лампа чёрного света, или лампа Вуда, (англ. Black light, Wood's light) — лампа, излучающая почти исключительно в наиболее длинноволновой («мягкой») частиультрафиолетового диапазона и, в отличие от кварцевой лампы, практически не дающая видимого света.

·       Принцип действия.

·       Изготавливаются такие лампы по тем же принципам, что и обычные люминесцентные, с тем лишь отличием, что в производстве ламп чёрного света используется особыйлюминофор и (или) вместо прозрачной стеклянной колбы используется колба из очень тёмного, почти чёрного, сине-фиолетового стекла. Такое стекло называется стекломВуда (англ. Wood's glass). Оно практически не пропускает видимого света с длиной волныбольше 400 нм.

·       Для того чтобы получить пик излучения лампы в диапазоне 368—371 нм, в качестве люминофора используются легированный европием борат стронция (SrB4O7:Eu2+), в то время как для получения излучения в диапазоне 350—353 нм — легированный свинцом силикат бария (BaSi2O5:Pb2+).

·       Лампа чёрного света может быть сконструирована и без применения специальных люминофоров. В этом случае в качестве материала колбы вместо обычного прозрачного кварцевого стекла используется стекло Вуда или дополнительный светофильтр из него. Именно таким образом производились самые первые лампы чёрного света.

·     Применение.

·       Применяется в криминалистике для обнаружения следовкровимочиспермы или слюны, которые флуоресцируют в свете лампы, при установлении подлинности банкнот (многие современные банкноты имеют флуоресцирующие метки), в индустрии развлечений (красители, флуоресцирующие в свете лампы, нередко используются при изготовлении клубных украшений или детских игрушек).

·       Помимо этого, лампы с такими характеристиками нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой частиспектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

·       Лампа Вуда применяется в дерматологии для диагностики заболеваний кожи, в частности при выявлении грибковых поражений и стригущего лишая (трихофития). Специальная лупа с ультрафиолетовой подсветкой, в сочетании с таблицей позволяет определить данные о состоянии кожи по её свечению.

·     Воздействие на здоровье человека

·       Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

·       Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)

·       УФ-B лучи (UVB, 280—315 нм)

·       Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

·       Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле — UVB.

·       Действие на кожу

·       Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам.

·       Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи, ускоряет старение и появление морщин.

·       При контролируемом воздействии на кожу ультрафиолетовых лучей, одним из основных положительных факторов считается образование на коже витамина D, при условии, что на ней сохраняется естественная жировая пленка. Жир кожного сала, находящийся на поверхности кожи, подвергается воздействию ультрафиолета и затем снова впитывается в кожу. Но если смыть кожный жир перед тем, как выйти на солнечный свет, витамин D не сможет образоваться. Если принять ванну сразу же после пребывания на солнце и смыть жир, то витамин D может не успеть впитаться в кожу.

·       Действие на сетчатку глаза

·       Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения, несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

·       Тем не менее, ультрафиолет чрезвычайно нужен для глаз человека, о чем свидетельствуют большинство офтальмологов. Солнечный свет оказывает расслабляющее воздействие на окологлазные мускулы, стимулирует радужную оболочку и нервы глаз, увеличивает циркуляцию крови. Регулярно укрепляя с помощью солнечных ванн нервы сетчатки, вы избавитесь от болезненных ощущений в глазах, возникающих при интенсивном солнечном свете

·     Защита глаз

·       Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.

·       Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).

·     Источники ультрафиолета

·      Природные источники.

·       Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

·       от концентрации атмосферного озона над земной поверхности

·       от высоты Солнца над горизонтом

·       от высоты над уровнем моря

·       от атмосферного рассеивания

·       от состояния облачного покрова

·       от степени отражения УФ-лучей от поверхности (воды, почвы)

·       Искусственные источники.

·       Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм (PhilipsOsramLightTechRadium,Sylvania и др.). В России известны производители УФ ламп для УФБД: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва), ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

·       Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

·       В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

·       Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны ? < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

·       В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.

·       В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorders). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

·       В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

·       Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксисанекоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

·       Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

·       Ртутно-кварцевая лампа

·       Люминесцентные лампы «дневного света» (имеют небольшую УФ-составляющую из ртутного спектра)

·       Эксилампа

·      Лазерные источники

·       Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокойинтенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в мacc-спектрометрии,лазерной микродиссекциибиотехнологиях и других научных исследованиях.

·       В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргонный лазеразотный лазери др.), конденсированные инертные газы, специальные кристаллы, органические сцинтилляторы, либо свободные электроны, распространяющиеся в ондуляторе.

·       В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ(соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета.



·     Сфера применения

·      Стерилизация.


·       Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

·       Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

·       Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

·       Дезинфекция питьевой воды

·       Метод дезинфекции с использованием УФ-излучения  доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоёвывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

·       Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства.

·       Ловля насекомых

·       Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

·       Ультрафиолет в реставрации

·       Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами.




© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.