реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Развитие солнечной энергетики

Развитие солнечной энергетики

Содержание

ВВЕДЕНИЕ

Глава 1. ПЕРСПЕКТИВЫ РАЗВИТИЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ

Глава 2. НАЗЕМНЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ

Глава 3. КОСМИЧЕСКИЕ СОЛНЕЧНЫЕ СТАНЦИИ

Глава 4. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ «СОЛНЕЧНАЯ ЭНЕРГЕТИКА»

4.1 Программа элективного курса по теме "Мир ищет энергию"

4.2 Урок по теме: "как живые организмы запасают энергию солнца"

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Солнце – источник всего на Земле: света, тепла, жизни. Только солнечный свет дарил людям тепло до того, как они научились добывать огонь, – солнечная энергетика была первой, освоенной человеческим сообществом. Недаром само это сообщество возникло, как утверждают палеонтологи, под жарким солнцем экватора, в Центральной Африке. По-видимому, энергетика Солнца станет самой приемлемой и в будущие эпохи благодаря своей естественности (дается-то даром), неисчерпаемости и экологической чистоте.

Почему же до сих пор она оставалась в тени? Почему в течение тысячелетий человек предпочитал согревать себя и готовить пищу, сжигая дрова, уголь, нефть, создавая хитроумные сооружения на быстрых реках и продувных ветрах, добывая (в последнее время) опасный радиоактивный уран? Потому что для технически неразвитого общества, прикованного к земной поверхности, солнечные энергостанции были бы маломощными, громоздкими, зависящими от погоды – практически неконкурентными. Только фантасты чутьем угадывали их будущий неизбежный взлет.

С выходом в космос, созданием орбитальных станций и бурным развитием электроники (в первую очередь полупроводников) ситуация резко изменилась. Сейчас солнечная энергетика – не далекая мечта, а каждодневная реальность, занимающая все больше места в деятельности научных институтов и промышленных организаций.

Солнечная энергия неисчерпаема – при бесконечном росте наших технических возможностей. Цель работы – рассмотреть достоинства и недостатки солнечной энергетики и предложить перспективы ее развития в дальнейшем.


Глава 1. ПЕРСПЕКТИВЫ РАЗВИТИЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ

Ежесекундно солнце излучает 88·1024 кал. или 370·1012 ГДж теплоты. Из этого количества теплоты на Землю попадает в энергетическом эквиваленте только 1,2·1012 Вт, т.е. за год 1018 квт·ч, или в 10000 раз больше той энергии, которая сегодня потребляется в мире. По сравнению с ним все остальные источники энергии дают теплоты пренебрежимо мало. Если, к примеру, потенциал Солнца определять по солнечной энергии, падающей только на свободные необрабатываемые земли, то среднегодовая мощность составит около 10000 Гвт, что примерно в 5000 раз больше, чем мощность всех современных стационарных энергетических установок мира. Практическую целесообразность использования солнечной энергии устанавливают исходя из максимального солнечного излучения, равного 1квт\м2 . Это так называемая наибольшая плотность потока солнечного излучения, приходящего на Землю. Это излучение в диапазоне длин волн 0,3 -2,5 мкм, называется коротковолновым и включает видимый спектр. Однако оно длится всего 1-2 часа в летние дни на близких к экватору широтах. Для населенных районов в зависимости от места, времени суток и погоды среднее солнечное излучение составляет 200-250 вт\м2. Но и это очень много с точки зрения производственной деятельности. К примеру, средняя плотность искусственной энергии, обусловленной хозяйственной деятельностью равна всего 0,02 вт\м2, т.е. в 10000 раз меньше средней плотности солнечной энергии. В отдельных местах Земного шара этот показатель значительно выше (в Японии - 2 вт\м2 , в Русском районе в Германии - 20 вт\м2 ). Расчеты показали, что для удовлетворения современного энергопотребления достаточно превратить солнечную энергию, падающую на 0,0025% поверхности Земли, в электрическую.

Этот краткий анализ позволяет сделать вывод, что непосредственное использование только солнечной энергии может свободно покрыть все потребности человечества в электроэнергии.

Значительная часть территории России имеет благоприятные климатические условия для использования солнечной энергии. В южных районах продолжительность солнечного излучения составляет от 2000 до 3000 часов в год, а годовой приход солнечной энергии на горизонтальную поверхность -от 1280 до 1870 кВт·час на 1 кв. м. В наиболее солнечном месяце - июле -количество энергии, приходящейся на 1 кв.м. горизонтальной поверхности составляет в среднем от 6,4 до 7,5 квт·час в день. Следовательно, широкое использование солнечной энергии может иметь здесь важное хозяйственное значение.

В связи с изысканием путей использования возобновляемых и экологически чистых источников энергии важным является оценка гелиоресурсов страны и районирование территории по потенциалу солнечной радиации.

Такие исследования основываются на климатическом обобщении метеостанций станции с применением вероятностно- статистического подхода; согласно результатам исследований в России выделено 11 районов по приоритету обеспеченности гелиоресурсами. Барнаул расположен в 4-ом по обеспеченности районе, республика Алтай - в 3-ем и 4-ом районах.

Таким образом, можно отметить "бесплатность", возобновляемость и огромные масштабы (можно сказать неисчерпаемость) ресурсов солнечной энергии. Однако низкая плотность солнечной радиации у поверхности Земли (в среднем 250 вт\м2, в наиболее благоприятных районах - 1 квт\м2) и нерегулируемый режим поступления к поверхности Земли (вращение Земли, облачность) создают значительные технические трудности ее использования (необходимость больших отражающих и поглощающих поверхностей, систем ориентирования, аккумуляторов и пр.).

Наибольшая плотность потока солнечного излучения, приходящего на Землю, составляет 1кВт\м2 в диапазоне длин волн 0,3-2,5 мкм. Это излучение называется коротковолновым и включает видимый спектр. Солнечное излучение - это энергетический поток от доступного источника гораздо более высокой температуры (Т поверхности солнца= 6000° К.), чем у традиционных источников.

Тепловая энергия его может быть использована с помощью стандартных технических устройств (например, паровых турбин) и, что более важно, методами, разработанными на основе фотохимических и фотофизических взаимодействий. Солнечные устройства, использующие энергию солнечного излучения, могут располагаться как на поверхности Земли, так и вне атмосферы Земли.

В процессе прохождения коротковолнового солнечного излучения через атмосферу различают следующие виды взаимодействий:

1. поглощение - переход энергии излучения в тепло, возбужде ние молекул, с последующим излучением света большой угол.

2. рассеяние - изменение направления распространения света в зависимости от угла.

3. отражение не зависит от угла, в среднем около 30% интенсив ности космического солнечного излучения отражается обратно в космическое пространство. Большую часть излучения отражают об лака, меньшую - снег и лед на поверхности земли.

Таким образом, установкой приемника солнечной энергии необходимо определить, какое количество энергии требуется собрать, как предлагается использовать собранную энергию. Тогда можно рассчитать размер приемника.

Наиболее очевидная область использования солнечной энергии это подогрев воды, воздуха. В районах с холодным климатом необходимо отопление жилых помещений и горячее водоснабжение. Энергия Солнца используется в нагревателях воды, воздуха, солнечных дистилляторах, зерносушилках, солнечных башнях (солнечная энергетическая установка башенного типа). Солнечные системы, которые предназначены для выработки электрической энергии, называются СЭС (солнечные энергетические станции).

Концентрация солнечной энергии позволяет получить температуры от 100до700°С, т.е. достаточно высокие для работы теплового двигателя с приемлемым к.п.д. Изготовление параболических концентраторов с диаметром превышающим 30 м, довольно сложно, тем не менее мощность одного такого устройства составляет 700 квт, что позволяет получить до 200 кВт.час электроэнергии. Этого достаточно для небольших энергосистем, но не для стационарных коммунальных сетей.

2. Термодинамическое преобразование солнечной энергии

Существует два основных способа сооружения СЭС (использующих термодинамическое преобразование солнечной энергии).

Из солнечной энергии методом термодинамического преобразования можно получить электричество практически так же, как и из других источников энергии, однако, солнечное излучение, падающее на землю, обладает рядом характерных особенностей:

1. низкой плотностью потока энергии;

2. суточной и сезонной цикличностью

3. зависимостью от погодных условий.

Поэтому при термодинамическом преобразовании этой энергии в электрическую следует стремиться к тому, чтобы применение тепловых режимов не вносили серьезных ограничений работы системы и, чтобы не возникало трудностей, связанных с ее использованием, т.е. подобная система должна иметь аккумулирующие устройства для исключения случайных колебаний режимов эксплуатации или обеспечение необходимого изменения производства энергии во времени.

Термодинамический преобразователь солнечной энергии должен содержать следующие компоненты:

1. систему управления падающей радиации,

2. приемную систему, преобразующую энергию солнечного излучения в тепло, которое передается теплоносителю,

3. систему переноса теплоносителя от приемника к аккумулятору или к одному или нескольким теплообменникам, в которых нагревается рабочее тело,

4. тепловой аккумулятор,

5. теплообменники.

Существует два подхода к созданию солнечных станций, работающих по термодинамическому циклу.

1. использование небольших (централизованных) станций для отда ленных районов.

2. создание крупных солнечных энергетических установок мощностью в несколько десятков мегаватт, рассчитанных на работу в энергосистеме.

КОЛЛЕКТОРЫ СОЛНЕЧНОЙ ЭНЕРГИИ

Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии и ее преобразование в теплоту, и нагрев воздуха, воды или другого теплоносителя.

Различают два типа солнечных коллекторов:

1. плоский,

2. фокусирующий.

В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих - с концентрацией, т.е. с увеличением плотности поступающего потока радиации.

Концентраторы солнечной энергии.

Концентраторы - это оптические устройства в виде зеркал или линз, в которых достигается повышение плотности потока солнечной энергии.

Зеркала плоские, параболоидные или параболоцилиндрические изготавливаются из тонкого металлического листа или фольги или др. Материалов с высокой отражательной способностью.

Сравнительная характеристика коллекторов различных типов

Солнечные станции строятся в основном двух типов:

1 - СЭС башенного типа,

2 - СЭС модульного типа.

Система, состоящая из множества небольших концентрирующих коллекторов, каждый из которых независимо следит за солнцем - модульная СЭС.

Концентраторы не обязательно должны иметь форму параболоида, не обычно это предпочтительно. Каждый концентратор передает солнечную энергию жидкости теплоносителя. Горячая жидкость ото всех коллекторов собирается в центральной энергостанции. Тепло несущая жидкость может быть водяным паром, если она будет прямо использоваться в паровой турбине или какой-нибудь термохимической средой - например, диссоциированный аммиак. Основные недостатки систем с сосредоточенными коллекторами:

1 - для каждого отражателя требуется сложный по конструкции термический приемник, который размещается в его фокальной области.

2 - для съема энергии 20000 параболоидных отражателей привод генератора мощностью 100 МВт необходим дорогой высокотемпературный обменный контур, соединяющий рассредоточенные концентраторы.

Указанные выше трудности разрешаются, если вместо этих 10-20 тысяч приемников сделать один аналогичный по своим размерам и параметрам паровому котлу обычного типа, и поднять его над поверхностью Земли.

Таким образом, возникает концепция гелиостанции башенного типа. В этом случае все параболоиды заменяются практически плоскими отражателями, производство которых значительно дешевле.

СОЛНЕЧНЫЕ ПРУДЫ

Солнечный пруд представляет собой оригинальный нагреватель, в котором теплозащитной крышкой является вода.

Достаточно большой водоем может быть просто вырыт (могут быть использованы и природные водоемы, например, в Израиле использовано Мертвое море в качестве солнечного пруда), что относительно недорого.

Солнечный пруды содержат в себе и накопители тепла, поэтому область их использования может быть довольно широкой. Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорбционного типа, для производства электроэнергии, т.е., солнечный пруд служит одновременно коллектором и аккумулятором теплоты.

В солнечный пруд заливается несколько слоев воды с различной степенью солености, причем наиболее соленый слой ( 0,5 м) располагается на дне. Солнечное излучение поглощается окрашенными в темный цвет дном водоема и придонный слой воды нагревается.

Придонный слой воды берется настолько более соленым, чем слой над ним, что плотность его хотя и уменьшается при нагревании, но все-таки остается выше плотности более высокого слоя. Поэтому конвекция (подъем вверх более теплой - более легкой- воды) подавляется и придонный слой нагревается все сильнее до 90° С, иногда - до кипения, при этом температура поверхностного слоя остается на уровне температуры окружающей среды. Пруд глубиной до 2-х м способен обеспечить непрерывную работу СЭС при прекращении инсоляции на срок до недели, пруды большей глубины могут обеспечить сезонный цикл аккумуляции. Правда, для этих СЭС требуются большие площади земельных угодий, в остальном - экологически приемлемые сооружения, тем более, что соленые пруды в естественных условиях существуют веками.


Глава 2. НАЗЕМНЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ


За последние 20 лет широкое распространение получили «солнечные дома», хозяйства от коттеджа до поместья, все энергетические потребности которых обеспечиваются собственной солнечной установкой. Не подводятся провода извне, нет счетчиков электроэнергии и теплой воды, не нужны запасы дров, угля, мазута. Никаких отключений и перебоев из-за прихотей Минтопэнерго – сам себе Чубайс, сам себе Черномырдин. Только все это пока, к сожалению, не у нас, а в США, Японии, Западной Европе, хотя климатические условия позволяют иметь это удобство во многих наших регионах. В чем дело, не очень понятно: то ли стоит дорого, то ли мода не дошла.

Используются разные способы преобразования солнечной энергии: фототермический, фотоэлектрический и фотохимический. В первом, простейшем, рабочее тело (теплоноситель) нагревается в коллекторе (системе светопоглощающих труб) до высокой температуры и служит для отопления помещений. Коллектор располагается на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Система отражающих жалюзи, управляемая компьютером, обеспечивает нужную освещенность коллектора для заданного интервала температур в помещениях. Часть тепловой энергии аккумулируется: краткосрочно (несколько дней) – с помощью тепловых или механических аккумуляторов, долгосрочно (на зимний период) – химических. За день 1 м2 солнечного коллектора простой конструкции может дать 50–70 л горячей воды (80–90 °С). Типовые гелиоустановки давно используются в южных районах для снабжения горячей водой отопительных и других хозяйственных систем.

В «солнечном доме», обеспечивающем себя не только теплом, но и электроэнергией, используется другой тип гелиоустановки. В этом случае лучшим рабочим телом являются жидкости типа фреона с малой теплотой испарения, но из-за опасного загрязнения в случае утечки (влияние на озоновый слой атмосферы) их промышленное производство сейчас запрещено. Они работают при температуре около 100 °С, что не требует специальных концентраторов солнечного потока. Если теплоноситель – вода, температура нагрева должна быть 200–500 °С при обязательном использовании концентраторов – зеркал, отражающих свет с большой площади на коллектор.

Все чаще применяются в солнечных установках фотоэлектрические преобразователи на основе кристаллов кремния и арсенида галлия. Последние обладают лучшей тепловой устойчивостью и более высоким КПД (реально до 20%). Применение гетероструктурных полупроводников, за открытие и внедрение которых академик Ж.И.Алферов получил недавно Нобелевскую премию, увеличивает эффективность преобразователей вдвое. Панели солнечных преобразователей, располагаемых, как правило, в верхней части здания, заменяют тепловой коллектор, и вырабатывают ток, идущий на освещение, обогрев и механические работы.

«Солнечный дом» – это современный уровень культуры жилья. Его эффективность и распространение в значительной степени зависят от такой простой истины, как экономное отношение к получаемой энергии. Он должен иметь надежную теплоизоляцию, современную вентиляционную технику, кондиционеры, т.е. не должен выбрасывать тепло «на ветер». Как показывает опыт, только за счет экономии тепла расходы электроэнергии сокращаются в несколько раз.

Границы малой солнечной энергетики постоянно расширяются, и теперь она способна обеспечивать энергией не только отдельные дома, но и целые заводы. В качестве примера можно назвать металлургический завод под Ташкентом, экспериментальные СЭС-5 в Крыму и «Solar-1» в Калифорнии. Это гелиостанции башенного типа с котлом, поднятым высоко над землей, и большим числом параболических или плоских зеркал (гелиостатов), расположенных у подножия. Зеркала должны быть подвижными, отслеживать дневное перемещение Солнца с помощью механической системы, управляемой компьютером, что усложняет установку и очень сказывается на стоимости производимой энергии. Вырабатываемый котлом пар приводит в действие электрогенератор, как на тепловых станциях.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.