реферат, рефераты скачать Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
реферат, рефераты скачать
реферат, рефераты скачать
МЕНЮ|
реферат, рефераты скачать
поиск
Проект толкательной печи для нагрева заготовок под прокатку (125х125х12000мм) из низколегированной стали производительностью 80 т/ч

Проект толкательной печи для нагрева заготовок под прокатку (125х125х12000мм) из низколегированной стали производительностью 80 т/ч

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Комсомольский-на-Амуре» государственный технический университет»



Факультет ИКП МТО

Кафедра МиТЛП







Курсовой проект

по теплотехнике

Проект толкательной печи для нагрева заготовок под прокатку (125х125х12000мм) из низколегированной стали производительностью 80 т/ч


Задание


Введение

1.       Литературный и патентный обзор по теме работы

2.       Расчет полного горения топлива

3.       Расчет нагрева металла в печи

4.       Расчёт основных размеров печи

5.       Расчет рабочего пространства печи

6.       Тепловой баланс

7.       Выбор горелок

8.       Определение высоты кирпичной трубы

9.       Расчёт сечения борова

10.  Выбор типа и размеров футеровки

11.  Расчёт узла печи

Список использованной литературы


Примечания


1.                                   Во время практики провести анализ тепловой работы печи, подобрать чертежи элементов конструкции печи;

2.                                   Определить расход энергии, топлива на технологический процесс.

3.                                   Определить расход воды на охлаждение отдельных элементов печи.

4.                                   Определить энергетические и технологические параметры основных и вспомогательных механизмов печи.

5.                                   Выполнить технологический, тепловой и конструкторский расчеты.

6.                                   Приступить к оформлению графической части курсовой работы.


Введение


Назначение печи состоит в передаче тепла технологическим материалам. Совокупность процессов теплообмена, происходящих в рабочем пространстве печи обычно при помощи движущейся печной среды, называют тепловой работой печи. Ее подразделяют на полезную, которая представляет собой передачу тепла технологическим материалам, и потерянную, включающую все иные виды потребления тепла.

В нагревательных печах металл или другие материалы нагревают с целью:

1.Изменения механических свойств металла(главным образом пластичности) перед обработкой давлением: прокаткой, ковкой, штамповкой, волочением;

2.Изменения структуры металла;

3.Обжига материалов(известняка, доломита, магнезита, руды, огнеупорных материалов);

4.Удаления влаги из материалов(сушка литейных материалов и форм, руды, угля);

В таких печах основной продукт нагрева не меняет своего агрегатного состояния, хотя в процессе нагрева могут существенно измениться его свойства.

Нагревательные печи подразделяют на печи для термообработки отливок и печи для сушки форм, стержней, песка и глины. По конструкции нагревательные печи подразделяются на камерные и методические.

В камерных печах нагреваемый материал неподвижен, поэтому конструкция их должна обеспечить одинаковое условие передачи тепла во всех точках пространства.

В методических печах нагреваемый материал движется навстречу нагревающим его газам, или в одном направлении с ними, или при комбинации прямотока и противотока, а также при поперечном по отношению к направлению движения материалов вводе газов. В методических печах не требуется создавать одинаковых условий нагрева во всем рабочем пространстве. Необходим только одинаковый нагрев материала в поперечных сечениях печного канала, перпендикулярных направлению движения материалов. Рассматриваемая методическая печь с теплотехнической точки зрения относится к конвективной, т.е. нагрев металла или других материалов производится конвекцией.

К числу основных требований, предъявляемых к печам, относят:

1.Полное удовлетворение требований технологии;

2.Высокую производительность печи при минимальном расходе тепла и минимальных потерях металла (материала) при нагреве;

3.Минимальный расход материалов и времени для постройки и ремонта при минимальных капитальных затратах;

4.Возможность автоматизации работы печей;

5.Благоприятные условия труда.

Теплотехнические расчеты выполняются с целью конструирования новой печи или выяснения изменений, которые произойдут в тепловой работе существующей печи при переходе к другим условиям эксплуатации. Все теплотехнические расчеты основаны на теории теплопроводности и закономерностях внешнего теплообмена, учитывающих процессы тепловыделения и движения печной среды. На внешний теплообмен в основном влияет конструкция печи, поскольку ею полностью или частично определяются: источник и способ передачи тепла; интенсивность тепловыделения и распределение тепла; соответствующие изменения во времени и пространстве температуры печной среды и обрабатываемых материалов; характер движения печной среды, включая распределение давления.


1.                Литературный и патентный обзор


Проходные печи с роликовым подом

Существующие печи по технологическому назначению делятся на:

1) нагревательные и 2) термические. Нагревательные печи используют для нагрева заготовок перед последующей обработкой давлением—прокаткой, ковкой, штамповкой и т. п. Нагрев изделий под термообработку производится в термических печах.

В прокатных цехах для нагрева металла перед прокаткой и для его термической обработки используют практически все типы печей как периодического, так и непрерывного действия. Наиболее высокой производительностью обладают печи непрерывного действия: 1) конвейерные; 2) с шагающим подом; 3) с роликовым подом.

Печи с роликовым подом получили наибольшее распространение, так как, обладают рядом преимуществ перед другими видами печей:

1) практически неограниченная длина печи, позволяющая проектировать печи большой производительности;

2) высокая удельная производительность в результате двухстороннего нагрева металла;

3) минимальный угар металла;

4) высокая степень механизации транспортировки обрабатываемого металла;

5) возможность автоматизации процесса;

6) простота обслуживания.

Особенно эффективными проходные печи оказались в условиях прокатного производства, где роликовый под является продолжением рольгангов и где необходима высокая производительность, достигающая 240 т/ч. Для исключения окалинообразования при нагреве применяют печи с защитной атмосферой, состоящей из смеси инертного газа и водорода. Нагрев металла в печах происходит излучением от радиационных труб, работающих на газе, или от электрических нагревателей. Для герметизации рабочего пространства эти печи имеют дополнительные шлюзовые камеры со стороны загрузки и выгрузки, а также специальные уплотнения роликовых окон, которые служат для выхода цапф роликов через кладку. Печные роликовые рольганги для нагрева перед прокаткой используют для нагрева как мелких заготовок, так и крупных слябов весом до 60 т. Конструкция роликов обеспечивает непрерывную работу печи при больших нагрузках и высоких температурах.

 Высокая степень механизации транспортировки нагреваемого металла позволяет создавать непрерывные агрегаты, в которые входят машины непрерывного литья заготовок (МНЛЗ), подогревательная печь с роликовым подом и прокатный стан. Такой технологический цикл позволяет существенно снизить энергозатраты на нагрев за счет использования горячей заготовки, полученной после МНЛЗ. Отапливаются печи, как правило, природным газом, состав газа и его калорийность существенно влияют на работу агрегатов печи и качество поверхности нагреваемых в ней изделий.

 Эффективность работы всей печи зависит от надежности печного рольганга, который является основной и наиболее дорогостоящей частью печи. В связи с этим рассмотрим более подробно конструкцию и режимы работы печных рольгангов Печной рольганг состоит из роликов, их подшипниковых опор, привода вращения и системы охлаждения. В настоящее время в печах с роликовым подом нашли применение следующие конструкции роликов:

1) с охлаждаемыми цапфами; 2) с водоохлаждаемым залом; 3) с водоохлаждаемой бочкой. Ролики с водоохлаждаемыми цапфами применяют в печах с температурой рабочего пространства до 1050 °С. Простота конструкции и низкие потери тепла у таких роликов обусловили их широкое распространение в промышленности.

 Ролики рольганга с водоохлаждаемым валом применяют основном при температуре в печи 1050-1250 °С. Нагрузка от веса нагреваемых изделий, лежащих на бочке, передается на несущий водоохлаждаемый вал через опорные втулки. Полость между бочкой ролика и водоохлаждаемым валом заполняют термоизоляцией. Одну из опорных втулок выполняют подвижной относительно вала. Если термоизоляция засыпная, то во время эксплуатации через зазор между втулкой и валом она высыпается и потери тепла через ролик увеличиваются.

 Применение различных уплотнений не дает положительного эффекта. В последнее время все более широкое применение в качестве термоизоляции получают волокнистые материалы.

 Ролики рольганга с водоохлаждаемой бочкой применяют при температуре атмосферы в печи свыше 1250 °С. Охлаждающую воду подают в кольцевой зазор между бочкой и центральной трубой. Ролик изготавливают целиком из углеродистой стали, теплопроводность которой выше, чем у жаропрочной стали. Потери тепла через такой ролик чрезвычайно велики, что является его основным недостатком и причиной достаточно редкого применения на практике. Наиболее распространенными являются первые два типа роликов. В качестве материалов для бочек таких роликов используют жаропрочные стали аустенитного класса или сплав. Содержание углерода в этих сталях колеблется в пределах 0,15—0,4%. Цапфы изготовляют литыми или коваными из теплостойких сталей.

 Ролики рольгангов нельзя останавливать более, чем на 3— 5 мин при рабочей температуре, так как при этом может произойти необратимая деформация их бочек — прогиб. Поэтому рольганги работают в одном из трех режимов: 1) непрерывном (или на проход); 2) реверсивном (или покачивания); 3) периодическом с кратковременными остановками. При работе рольганга в непрерывном режиме все ролики печи вращаются в одном направлении с постоянной скоростью. В режиме покачивания (или реверсивном) ролики поворачивают на 1,5; 2,5 оборота или другой угол в одну сторону, а затем после остановки в обратную сторону на такой же угол. При периодическом режиме работы ролики периодически поворачивают на 0,25 оборота в направлении движения садки с остановками в течение 1-120 с.  в зависимости от режима работы рольгангов, шага роликов, размеров обрабатываемых изделий и других факторов применяют различные схемы приводов.


2.                Расчёт полного горения топлива


Топливо: Газ месторождение Северо-Сахалинское


Состав и теплота сгорания

 Низшая теплота сгорания:

 Qрн=358 .90,40+638 .1,90+913 .1,1+1187 .0,60+127,7 .0,20=35430(кДж/м3).


Теоретический расход кислорода, необходимого для сжигания единицы топлива:


VO2=0,01(2CH4+3,5C2H6+5C3H8+6,5C4H10 ).

VO2=0,01(02 .90,40+3,5 .1,90+5 .1,10+6,5 .0,60)=1,969(м3/ м3).


Действительный объём сухого воздуха, необходимого для сжигания единицы топлива:

La=(1+k) a VO2,


Где k - доля кислорода в воздухе; k = N2/O2; k = 79/21=3,762%;

a - коэффициент избытка или расхода воздуха(1,1).


La=(1+3,762) .1,10 .1,969=10,119(м3/ м3).


3.5.Массовое количество воздуха:


Lм=1,293 La; Lм

Lм =1,293 . 10,119=13,084(м3/м3).


Качественный состав продуктов сгорания:


VCO2=0,01(CO+CO2+CH4+2C2H4+2C2H6+3C3H8+4C4H10);

VCO2=0,01(4,70+90,40+2 .1,90+3 .1,10+4 .0,60+12 .0,20)=1,046(м3/кг);

VO2=(a-1)VO2;

VO2=(1,10 -1) .1,969=0,197(м3/кг);

VN2=0,008Np+akVO2;

VN2=0,008 .1,1+1,10 .3,762 . 1,969=7,962(м3/кг);

VH2O=0,01(H2O+H2+H2S+2CH4+2C2H4+3C2H6+4C3H6+5C4H10)+0,775 Lad;

VH2O=0,01(2 .90,40+3 .1,90+4∙1,1+5 .0,60)+0,775 .10,119 .0,01=2,017(м3/кг);

Vд= VCO2+VH2O+VSO2+VN2+VO2+VCO;

Vд=1,046+0,197+7,962+2,017=11,222(м3/кг).


Состав влажных продуктов сгорания:


СО2= VCO2/Vд .100%; СО2=1,046/11,222 .100=9,321%;

O2=VО2/Vд .100%; O2=0,197/11,222.100=1,755%;

N2=VN2/Vд .100%; N2=7,962/11,222.100=70,95%;

H2O=VH2O/Vд .100%; H2O=2,017/11,222.100=17,974%;


При сложении получим 100%.

Состав сухих продуктов сгорания:


СО2=VCO2 / (Vд-VH2O) .100%; СО2=1,046/(11,222-2,017) .100=11,363%;

N2=VN2/(Vд-VH2O) .100%; N2=7,962/(11,222-2,017) .100=86,496%;

O2=VО2/(Vд-VH2O) .100%; O2=0,197/(11,222-2,017) .100=2,14%;


При сложении получим 100%.

Плотность продуктов сгорания:


rд=(0,44СО2+0,28N2+0,32O2)/22,4;

rд=(0,44 . 9,321+0,18 . 17,974+0,28 . 70,95+0,32 . 1,755)/22,4=1,239кг/м3.


Определить теплоемкость продуктов сгорания Сv кДж/(м3×К);


СV = 0,01 (CСO2×CO2+CCO×CO+CH2O×H2O+CSO2×SO2+CN2×N2+CO2×O2),

СV=0,01(2,2886.9,321+1,7675.17,974+1,4065∙70,95+1,5065.1,755)=1,55(м3/кг);


Физическое тепло, вносимое подогретым топливом и воздухом, из расчета на единицу топлива:


Qф = Cт tт+Cв tв ,

Qф =157,09∙20+1,3181∙300=3537 кДж;

Cm= CСН4 CH4+ CС2Н6 C2H6+ CС3Н8 C3H8+ CС4Н10 C4H10 + CС2О C2О+C N2N 2;

Сm=90,4∙1,566+1,9∙2,26+1,1∙3,142+0,6∙4,244+4,7∙0,8688+1,1∙1,04=157,09 кДж/(м3 × К);


При подогретом воздухе и топливе калориметрическую температуру определяют по выражению:


tк= (Qрн+ Qф)/(Vд Сv),

tк= (35434+3537)/(11,222∙1,555)=2233 ОС;


Энтальпия продуктов сгорания равна:


iп =( Qрн+ Qф )/Vд ;

iп =(35434+3537)/11,222=3473 кДж/м3;


Определяем энтальпию iп;

Задаются приближенно температуру продуктов горения t и определяют соответствующую ей энтальпию iп;

Примем t1=2373К(2100 ОС);


iп//(1)= СV ∙t1; iп//(1)= 1,555∙2100=3473кДж/м3;


Определяем iп(2):

Примем t2=2573К(2300 ОС);


iп//(2)= СV ∙t2; iп//(2)= 1,555∙2300=3576кДж/м3

iп(1)< iп< iп(2)

3265 < 3473 < 3576


Определяем калориметрическую температуру:


tк=t2-( iп(2)- iп)(t2-t1)/( iп(2)- iп(1)).

tк=2300 - (3576 – 3473)(2300-2100)/(3576 – 32655)=2234 ОС;


Действительную температуру в топке или печи определяют с учетом потерь на диссоциацию и теплопередачу в окружающую среду


tд = h1 tк ;


h1 – опытный пирометрический коэффициент, зависящий от конструкции топливосжигающих устройств или печи (0,72);

tд =0,72 .2233=1608 ОС.



4.Расчет нагрева металла в печи


Т.к. осуществляется двухрядное расположение заготовок,

следовательно ширина печи будет равна:


.


Здесь 0,25 - зазор между заготовками и стенками печи, a =0.03м - зазор между заготовками и b - ширина заготовки. Высоту рабочего пространства по практическим данным принимаем: в сварочной зоне hсв=3,1м, в методической hмет=2,06м, в томильной hт = 2,75 м.

Находим степень развития кладки (на1м длинны печи):


W=Fкл/Fм=(2h+B)/l;

В сварочной зоне: Wсв=Fкл/Fм=(2h+B)/l; Wсв= (2∙2,06+5,57)/12=0,81.

В томильной зоне: WТ=Fкл/Fм=(2h+B)/l; WТ =(2∙2,75+5,57)/12=0,92.


Определяем эффективную толщину газового слоя :


В методической зоне ;

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.